
it´s all about perfection

HOWTO use
CODESYS® on Tx/Cx Controller

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

STRIVE IN PERFECTION
IN WHATEVER YOU

DO
TAKE THE BEST THAT
EXISTS AND MAKE IT

BETTER
WHEN IT DOES NOT

EXIST. DESIGN IT.

Sir Henry Royce

CONTENT

PREREQUISITES AN-5

Install CODESYS®
on RESI-T4/C4 controller

AN-7

In this application note you will find ...

CODESYS® ASCII driver
for RESI-T4 controller

AN-17

AN-3

it´s all about perfection

PREREQUISITES

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

PREREQUISITES

AN-5

We assume that the reader is familiar how to use WINDOWS® operating system, how to configure a LINUX® Ethernet interface, how to use
a remote desktop program or SSH console to configure LINUX®. Also we assume that the reader is able to install and open the CODESYS®
IDE on a PC.

Furthermore we assume, that the reader is able to create a correct CODESYS® program. In special the reader is familiar how to create and
write a STRUCTURED TEXT program in CODESYS®. If not, please consult the internet or book a education workshop. RESI is in no way
responsible, if you or your customer cannot use the given advice here, because of lack of education in your or their staff!

With the purchase of a IoT Controller from RESI, you have not purchased the right of free education or free consulting from RESI!

We want to mention explicit, that CODESYS® has changed it's licensing method. Please refer to their homepage for more information how
this affects your projects.

RESI delivers IoT controllers with the ability to run CODESYS® on it, but RESI is not liable for any functional problems, software errors, law
suits or other issues which results out of using CODESYS® on our devices in your project or machinery!

IMPORTANT SAFETY NOTES
Important hint:

Before you start with the installation and the initial setup of the device, you have to read this document and the attached installation guide
and the actual manual for the device very carefully. You have to follow all the herein given information very accurate!

 Only authorized and qualified personnel are allowed to install and setup the device!
 The connection of the device must be done in de-energized state!
 Do not perform any electrical work while the device is connected to power!
 Disable and secure the system against any automatic restart or power on procedure!
 The device must be operated with the defined voltage level!
 Supply voltage jitters must not exceed the technical specifications and tolerances given in the technical manuals for the product. If you

do not obey this issue, the proper performance of the device cannot be guaranteed. This can lead to fail functions of the device and in
worst case to a complete breakdown of the device!

 You have to obey the current EMC regulations for wiring!
 All signal, control and supply voltage cables must be wired in a way, that no inductive or capacitive interference or any other severe

electrical noise disturbance may interfere with the device. Wrong wiring can lead to a malfunction of the device!
 For signal or sensor cables you have to use shielded cables, to avoid damages through induction!
 You have to obey and to apply the current safety regulations given by the ÖVE, VDE, the countries, their control authorities, the TÜV

or the local energy supply company!
 Obey country-specific laws and standards!
 The device must be used for the intended purpose of the manufacturer!
 No warranties or liabilities will be accepted for defects and damages resulting from improper or incorrect usage of the device!
 Subsequent damages, which results from faults of this device, are excluded from warranty and liability!
 Only the technical data, wiring diagrams and operation instructions, which are part to the product shipment are valid!
 The information on our homepage, in our datasheets, in our manuals, in our catalogues or published by our partners can deviate from

the product documentation and is not necessarily always actual, due to constant improvement of our products for technical progress!
 In case of modification of our devices made by the user, all warranty and liability claims are lost!
 The installation has to fulfill the technical conditions and specifications (e.g. operating temperatures, power supply, …) given in the

devices documentation!
 Operating our device close to equipment, which do not comply with EMC directives, can influence the functionality of our device,

leading to malfunction or in worst case to a breakdown of our device!
 Our devices must not be used for monitoring applications, which solely serve the purpose of protecting persons against hazards or

injury, or as an emergency stop switch for systems or machinery, or for any other similar safety-relevant purposes!
 Dimensions of the enclosures or enclosures accessories may show slight tolerances on the specifications provided in these instructions!
 Modifications of this documentation is not allowed!
 In case of a complaint, only complete devices returned in original packing will be accepted!

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

it´s all about perfection

Install CODESYS®
on RESI-T4/C4 controller

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Install CODESYS® on
RESI-T4/C4 controller

AN-7

For this tutorial we use CODESYS V3.5 SP19 Patch 6.

IP SETTINGS FOR THE C4/T4 CONTROLLER

Use like we do VNC Viewer for Raspberry Pi to connect to the LINUX desktop on our preinstalled LINUX:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Open a shell and enter the command

sudo nano /etc/dhcpcd.conf

Install CODESYS® on
RESI-T4/C4 controller

AN-8

Scroll down to the static IP settings and change them to your needs. You will find more information about correct IP settings for Raspberry
Pi, because the are so many possibilities in LINUX...

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

After you have changed your settings, reboot your controller with

sudo reboot

Be aware: If you enter a false IP setting your controller will not be reachable anymore. The only way is to create a new SD-CARD with a
plain Raspian LINUX or you use our standard image from our homepage to create a new SD-CARD.

Check your new IP with the VNCViewer. If this runs properly, everything is fine.

Install CODESYS® on
RESI-T4/C4 controller

AN-9

INSTALL CODESYS ARM runtime

Before you can download the runtime for our controller, you have to update the CODESYS IDE to offer this possibility.
Check your Menu tool. Here you have to have the menu entries
Update Linux ARM
Update Linux ARM64
and
Update Edge Gateway

If not open the CODESYS Installer and install
CODESYS Control for Linux ARM SL for a 32 bit LINUX system (Our Image is 32 bit) or
CODESYS Control for Linux ARM64 SL for a 64 bit LINUX or both of them.
and CODESYS Edge Gateway for Linux
How you can do that consult CODESYS homepage...

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

if you were successful, you should see the additional options
in the tools menu:
Update Linux ARM
Update Edge Gateway
Update Linux ARM64

Install CODESYS® on
RESI-T4/C4 controller

AN-10

Now we select Tools→ Update Linux ARM. You should see this window:
Enter your user name for the LINUX and the password you have defined
for our controller. Enter the correct IP address of the controller.
Then click install. After a while everything should be installed on your controller.
Click yes to install the CODESYS Edge Gateway for Linux too.

When the installation is finished click System Info. You should get
an similar output: Scroll down in the section Package Info. Here you have to find
codesyscontrol 4.x.x armhf. This is the runtime of the CODESYS!

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Install CODESYS® on
RESI-T4/C4 controller

AN-11

Defining the correct serial interfaces for CODESYS

We have to tell CODESYS to use the correct serial interfaces if you open a serial device in CODESYS. Our controllers use dev/ttyACM0 to
dev/ttyACM4 as new interfaces in LINUX. The amount of interfaces depend on the product:
COM1 of CODESYS will be dev/ttyACM0,
COM2 of CODESYS will be dev/ttyACM1,
COM3 of CODESYS will be dev/ttyACM2,
COM4 of CODESYS will be dev/ttyACM3

In the next step we open the VNCviewer again and we open a shell
Enter sudo nano /etc/CODESYSControl_User.cfg

Add the lines at the end of the file, save it and reboot the controller with sudo reboot
[SysCom]
Linux.Devicefile=/dev/ttyACM

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Install CODESYS® on
RESI-T4/C4 controller

AN-12

Connect to IoT controller with CODESYS

Back in CODESYS we create a new standard project. Select CODESYS Control for Linux ARM SL and structured text (ST)

After creating the empty program, select Online → Login.

Select NO in this dialog

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Install CODESYS® on
RESI-T4/C4 controller

AN-13

You should see the following Communication Settings. Notice, that the gateway has a greed LED, which meas the connection works, but
our device has a gray LED. Enter the IP address of our device (In our case 192.168.100.11:11740) beneath the device and hit ENTER. Use the
socket 11740 after your IP address to successfully connect to your new device.

You will see the following screen. Answer the question for the user management with YES.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Install CODESYS® on
RESI-T4/C4 controller

AN-14

In the dialog enter a name and a password. BUT: If you forget this user name and the password you cannot access the device anymore.
You really have to create a new SD-CARD with a empty CODESYS. Everything on your old system is lost. so
KEEP THIS INFORMATION SECURE ON A SAVE PLACE

Enter now the new name and password.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Install CODESYS® on
RESI-T4/C4 controller

AN-15

If everything works well, you should see two green LEDs to indicate that your device was found.

Choose Online→ Login. Click Yes for creation of the application. Now the application is downloaded, but to start it, you have to right-click
in the left tree to application [stop]. Select Start to start your empty program.

Now to write code, we have first to logout from the device. Choose Online → Logout!

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

it´s all about perfection

CODESYS®
ASCII driver for RESI-T4 controller

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

CODESYS® ASCII driver
for RESI-T4 controller

AN-17

Connect to IoT controller with CODESYS

Back in CODESYS we create a new standard project. Select CODESYS Control for Linux ARM SL and structured text (ST)

Then we add a Global variable list object named RESI and we enter the following listing into it.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

CODESYS® ASCII driver
for RESI-T4 controller

AN-18

Listing of Global variable list RESI:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

{attribute 'qualified_only'}
VAR_GLOBAL

// TRUE: ASCII Communcation to RESI Controller is ok, FALSE: No ASCII communication to RESI Controller
RESI_IsOnline:BOOL;
// Counter of communcation errors since start of task
RESI_Errors:UDINT;
// Command which produced last communcation error
RESI_ErrorsLastCmd:STRING(80);

// Current time of RESI Controller e.g. RESI-T4-A or RESI-C4-A-12DI12DO,...
RESI_Type:STRING(40);
// Current software version of RESI Controller e.g. 1.1.0
RESI_Version:STRING(40);

// Current status of DIP switch 0-255, 0x00-0xFF Bit 0:DIP Switch 1, 1:DIP 2,...
RESI_DIP_Switch:UINT;

// LED1:GREEN
// LED2:WHITE
// LED3:RED
// LED4:YELLOW
// Current Mode for the 4 LEDs.
// Modes:
// OFF: LED will be OFF
// ON: LED will be ON
// INV: Last LED state was inverted
// PULSE: LED is in PULSE state
// BLINK: LED is in BLINK state
// FLASH: LED is in FLASH state
RESI_LEDx_Mode:ARRAY [1..4] OF STRING(20);
// Current state of LED: TRUE: LED is ON, FALSE: LED is OFF
RESI_LEDx_State:ARRAY [1..4] OF BOOL;
// New Mode for LED:
// OFF: Switch LED to OFF
// ON: Switch LED to ON
// BLINKVERYSLOW: LED blinks with 3s rhythm
// BLINKSLOW: LED blinks with 1s rhythm
// BLINKFAST: LED blinks with 0.1s rhythm
// PULSEVERYSLOW: LED is ON for 3s and then OFF forever
// PULSESLOW: LED is ON for 1s and then OFF forever
// PULSEFAST: LED is ON for 0.1s and then OFF forever
// FLASHVERYSLOW: LED is ON for 0.6s and then OFF for 5.4s, cycle will be repeated forever
// FLASHSLOW: LED is ON for 0.3s and then OFF for 1.7s, cycle will be repeated forever
// FLASHFAST: LED is ON for 0.03s and then OFF for 0.17s, cycle will be repeated forever
RESI_LEDx_NewMode:ARRAY [1..4] OF STRING(20);
// Internal used - do not overwrite
RESI_LEDx_ActMode:ARRAY [1..4] OF STRING(20);

// Acutual Date+Time of internal clock...
// Format: YMD,<Year:24-99>,<Month:1-2>,<Day:1-31>,
// HMS:<Hour:0-23>,<Minute:0.59>,<Seconds:0-59>,<DayOfWeek:MON,TUE,WED,THU,FRI,SAT,SUN>,
// DOK,<1=Date is OK,0=Date is NOK>,TOK,<1=Time is OK,0=Time is NOK>
// e.g. YMD,24,2,29,HMS:14:56:34,THU
RESI_RTC_CurrentTime:STRING(40);

// New Date+Time of internal clock...
// Format: YMD,<Year:24-99>,<Month:1-2>,<Day:1-31>,
// HMS:<Hour:0-23>,<Minute:0.59>,<Seconds:0-59>,<DayOfWeek:MON,TUE,WED,THU,FRI,SAT,SUN>
// e.g. YMD,24,2,29,HMS:14:56:34,THU
RESI_RTC_NewTime:STRING(40);
// Internal used - do not overwrite
RESI_RTC_ActTime:STRING(40);

END_VAR

CODESYS® ASCII driver
for RESI-T4 controller

AN-19

Now we add a POU for a function named F_SplitString with the return type
ARRAY[0..9] OF STRING(80)

Enter the Listing into this function

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

CODESYS® ASCII driver
for RESI-T4 controller

AN-20

Listing of function F_SplitString:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

FUNCTION F_SplitString : ARRAY[0..9] OF STRING(80)
VAR_INPUT
 sInput : STRING(80);
 sSplitChar : STRING(1);
END_VAR
VAR_OUTPUT
 iParts : INT;
END_VAR
VAR
 sInputCopy : STRING(80);
 sSplitValue : STRING(80);
 iSplitLength : INT := 0;
 i : INT;
END_VAR

sInputCopy := sInput;
iParts:=0;
FOR i := 0 TO 9 DO
 IF FIND(sInputCopy, sSplitChar) > 0 THEN
 sSplitValue := LEFT(sInputCopy, FIND(sInputCopy, sSplitChar) - 1);
 iSplitLength := LEN(sSplitValue) + 1;

 iParts:=iParts+1;
 ELSE
 sSplitValue := sInputCopy;
 iSplitLength := LEN(sSplitValue);

 iParts:=iParts+1;
 END_IF

 sInputCopy := DELETE(sInputCopy, iSplitLength, 1);

 F_SplitString[i] := sSplitValue;

 IF LEN(sInputCopy) = 0 THEN
 EXIT;
 END_IF
END_FOR

CODESYS® ASCII driver
for RESI-T4 controller

AN-21

Now we add a POU for a function block named SERIAL_LINE

Enter the Listing into this function

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

CODESYS® ASCII driver
for RESI-T4 controller

AN-22

Listing of function block SERIAL_LINE:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

FUNCTION_BLOCK SERIAL_LINE
VAR_INPUT

udiPort: UDINT;
udiBaudrate: UDINT;
sbStopBits: COM.STOPBIT:= COM.STOPBIT.ONESTOPBIT;
paParity: COM.PARITY:= COM.PARITY.EVEN;
iCmdIndex: INT;
sWriteCmd: STRING(80);
sWriteFullCmd: STRING(80);
udiByteSize: UDINT;

END_VAR
VAR_OUTPUT

sReadPart: STRING(80);
sReadTmp: STRING(80);
sReadCmd: STRING(80);
errError: COM.ERROR;
xClosed: BOOL:= TRUE;

END_VAR
VAR

iState: INT;
tTimer: TON;
comOpen: COM.Open; (* Instance of the function block for opening a port *)
hCom: CAA.HANDLE; (* handle of the port*)
aParameter: ARRAY [1..7] OF COM.PARAMETER;
comWrite: COM.Write; (* Instance of the Write function block *)
bWriteBuffer: ARRAY [1..80] OF BYTE; (*Used to write data to the serial port*)
szWrite: CAA.SIZE;
comRead: COM.Read; (* Instance of the Read function block *)
bReadBuffer: ARRAY [1..80] OF BYTE; (*Used to read data from the serial port*)
szRead: CAA.SIZE;
comClose: COM.Close; (* Instance of the function block for closing a port *)
index: UDINT;
TmpStr: STRING(80);
SplitParts:INT;
Parts: ARRAY [0..9] OF STRING(80);

END_VAR

CASE iState OF

0: // The parameter for the COM Ports are set
aParameter[1].udiParameterId:= COM.CAA_Parameter_Constants.udiPort;
aParameter[1].udiValue:= udiPort;
aParameter[2].udiParameterId:= COM.CAA_Parameter_Constants.udiBaudrate;
aParameter[2].udiValue:= udiBaudrate;
aParameter[3].udiParameterId:= COM.CAA_Parameter_Constants.udiStopBits;
aParameter[3].udiValue:= INT_TO_UDINT(sbStopBits);
aParameter[4].udiParameterId:= COM.CAA_Parameter_Constants.udiParity;
aParameter[4].udiValue:= INT_TO_UDINT(paParity);
aParameter[5].udiParameterId:= COM.CAA_Parameter_Constants.udiTimeout;
aParameter[5].udiValue:= 0;
aParameter[6].udiParameterId:= COM.CAA_Parameter_Constants.udiBinary;
aParameter[6].udiValue:= 0;
aParameter[7].udiParameterId:= COM.CAA_Parameter_Constants.udiByteSize;
aParameter[7].udiValue:= udiByteSize;

 comOpen(xExecute:= FALSE);
RESI.RESI_IsOnline:=FALSE;
RESI.RESI_Errors:=0;
RESI.RESI_ErrorsLastCmd:='';

iCmdIndex:=-1;
iState:= 1;

1: //First the COM Port is opened
comOpen(xExecute:= TRUE, usiListLength:= SIZEOF(aParameter) / SIZEOF(COM.PARAMETER), pParameterList:= ADR(aParameter),

hCom=> hCom);
xClosed:= FALSE;
IF comOpen.xDone THEN

comOpen(xExecute:= FALSE);
//depending on the mode the state for reading or writing is set

 iState:= 100;
ELSIF comOpen.xError THEN

errError:= comOpen.eError;
comOpen(xExecute:= FALSE);
iState:= 32767;

END_IF

CODESYS® ASCII driver
for RESI-T4 controller

AN-23

Listing of function block SERIAL_LINE:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

100: // ASCII Commands for RESI-T4...
iState:=1000;

 iCmdIndex:=iCmdIndex+1;
IF iCmdIndex>9 THEN

iCmdIndex:=0;
END_IF
CASE iCmdIndex OF

0: sWriteCmd:='VERSION';
1: sWriteCmd:='TYPE';
2: sWriteCmd:='GDIP';
3: sWriteCmd:='GLED1';
4: sWriteCmd:='GLED2';
5: sWriteCmd:='GLED3';
6: sWriteCmd:='GLED4';
7: sWriteCmd:='GRTC';
8:

sWriteCmd:='';
IF RESI.RESI_LEDx_NewMode[1]<>RESI.RESI_LEDx_ActMode[1] THEN

RESI.RESI_LEDx_ActMode[1]:=RESI.RESI_LEDx_NewMode[1];
TmpStr:=RESI.RESI_LEDx_NewMode[1];
sWriteCmd:='SL1';

ELSIF RESI.RESI_LEDx_NewMode[2]<>RESI.RESI_LEDx_ActMode[2] THEN
RESI.RESI_LEDx_ActMode[2]:=RESI.RESI_LEDx_NewMode[2];
TmpStr:=RESI.RESI_LEDx_NewMode[2];
sWriteCmd:='SL2';

ELSIF RESI.RESI_LEDx_NewMode[3]<>RESI.RESI_LEDx_ActMode[3] THEN
RESI.RESI_LEDx_ActMode[3]:=RESI.RESI_LEDx_NewMode[3];
TmpStr:=RESI.RESI_LEDx_NewMode[3];
sWriteCmd:='SL3';

ELSIF RESI.RESI_LEDx_NewMode[4]<>RESI.RESI_LEDx_ActMode[4] THEN
RESI.RESI_LEDx_ActMode[4]:=RESI.RESI_LEDx_NewMode[4];
TmpStr:=RESI.RESI_LEDx_NewMode[4];
sWriteCmd:='SL4';

END_IF
IF sWriteCmd<>'' THEN

IF TmpStr='ON' THEN
sWriteCmd:=CONCAT(sWriteCmd,'ON');

ELSIF TmpStr='OFF' THEN
sWriteCmd:=CONCAT(sWriteCmd,'OFF');

ELSIF TmpStr='BLINKVERYSLOW' THEN
sWriteCmd:=CONCAT(sWriteCmd,'BLINK:3000');

ELSIF TmpStr='BLINKSLOW' THEN
sWriteCmd:=CONCAT(sWriteCmd,'BLINK:1000');

ELSIF TmpStr='BLINKFAST' THEN
sWriteCmd:=CONCAT(sWriteCmd,'BLINK:100');

ELSIF TmpStr='PULSEVERYSLOW' THEN
sWriteCmd:=CONCAT(sWriteCmd,'PULSE:3000');

ELSIF TmpStr='PULSESLOW' THEN
sWriteCmd:=CONCAT(sWriteCmd,'PULSE:1000');

ELSIF TmpStr='PULSEFAST' THEN
sWriteCmd:=CONCAT(sWriteCmd,'PULSE:100');

ELSIF TmpStr='FLASHVERYLSLOW' THEN
sWriteCmd:=CONCAT(sWriteCmd,'FLASH:600,5400');

ELSIF TmpStr='FLASHSLOW' THEN
sWriteCmd:=CONCAT(sWriteCmd,'FLASH:300,1700');

ELSIF TmpStr='FLASHFAST' THEN
sWriteCmd:=CONCAT(sWriteCmd,'FLASH:30,170');

ELSE
iState:=100;

END_IF
ELSE

iState:=100;
END_IF

9:
IF RESI.RESI_RTC_NewTime<>RESI.RESI_RTC_ActTime THEN
 RESI.RESI_RTC_ActTime:=RESI.RESI_RTC_NewTime;
 sWriteCmd:=CONCAT('SRTC:',RESI.RESI_RTC_NewTime);
ELSE

iState:=100;
END_IF

END_CASE

CODESYS® ASCII driver
for RESI-T4 controller

AN-24

Listing of function block SERIAL_LINE:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

1000: // the writing process is started

IF NOT comWrite.xExecute THEN
sWriteFullCmd:=CONCAT('#255,',sWriteCmd);
sWriteFullCmd:=CONCAT(sWriteFullCmd,'$R');
szWrite:= INT_TO_UDINT(LEN(sWriteFullCmd));
MEM.MemMove(ADR(sWriteFullCmd), ADR(bWriteBuffer), ANY_TO_UINT(szWrite));

END_IF
sReadTmp:='';
sReadCmd:='';
comWrite(xExecute:= TRUE, hCom:= hCom, pBuffer:= ADR(bWriteBuffer), szSize:= szWrite);
IF comWrite.xDone THEN

// the flag is set to false, that in the next cyle this process is started again, by setting it to true
comWrite(xExecute:= FALSE);
iState:= 1010;

ELSIF comWrite.xError THEN
errError:= comWrite.eError;
comWrite(xExecute:= FALSE);
iState:= 32767;

END_IF

1010: //start timer for timeout for read answer
tTimer(IN:= FALSE);
tTimer();
tTimer(IN:= TRUE, PT:= T#1000MS);
tTimer();
iState:= 1020;

1020: //The reading process is started
// Timeout with answer ...
tTimer();
IF tTimer.Q OR tTimer.ET>=T#1000MS THEN

tTimer(IN:= FALSE);
comRead(xExecute:= FALSE);

 RESI.RESI_IsOnline:=FALSE;
 RESI.RESI_Errors:=RESI.RESI_Errors+1;

RESI.RESI_ErrorsLastCmd:=sWriteCmd;
iState:= 100;

ELSE
comRead(xExecute:= TRUE, hCom:= hCom, pBuffer:= ADR(bReadBuffer), szBuffer:= SIZEOF(bReadBuffer));
IF comRead.xDone THEN

szRead:= comRead.szSize;
//check if the Port has send something
IF szRead > 0 THEN

//the text from the read buffer is saved in the sReadText variable
MEM.MemMove(ADR(bReadBuffer), ADR(sReadPart), ANY_TO_UINT(szRead));
MEM.MemFill(ADR(sReadPart) + ANY_TO_UINT(szRead), 1, 0);
sReadTmp:=CONCAT(sReadTmp,sReadPart);

END_IF
// the flag has to be set to false, that in the next cylce, the read task will start again, by

setting it to true
comRead(xExecute:= FALSE);
IF LEFT(sReadTmp,5)='#255,' AND RIGHT(sReadTmp,1)='$R' THEN

// Antwort ist vollständig...
sReadCmd:=MID(SReadTmp,LEN(sReadTmp)-6,6);
tTimer(IN:= FALSE);
iState:=2000;

END_IF
ELSIF comRead.xError THEN

tTimer(IN:= FALSE);
errError:= comRead.eError;
comRead(xExecute:= FALSE);
iState:= 32767;

END_IF
END_IF

CODESYS® ASCII driver
for RESI-T4 controller

AN-25

Listing of function block SERIAL_LINE:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

2000: // Answer is here..
RESI.RESI_IsOnline:=TRUE;
CASE iCmdIndex OF

0:
IF LEFT(sReadCmd,8)='VERSION:' THEN

RESI.RESI_Version:=MID(sReadCmd,LEN(sReadCmd)-8,9);
END_IF

1:
IF LEFT(sReadCmd,5)='TYPE:' THEN

RESI.RESI_Type:=MID(sReadCmd,LEN(sReadCmd)-5,6);
END_IF

2:
IF LEFT(sReadCmd,5)='GDIP:' THEN

TmpStr:=MID(sReadCmd,LEN(sReadCmd)-5,6);
Parts := F_SplitString(sInput := TmpStr, sSplitChar := ',', iParts => SplitParts);
IF SplitParts=2 THEN

RESI.RESI_DIP_Switch:=STRING_TO_WORD(Parts[0]);
END_IF

END_IF
3:

IF LEFT(sReadCmd,6)='GLED1:' THEN
TmpStr:=MID(sReadCmd,LEN(sReadCmd)-6,7);
Parts := F_SplitString(sInput := TmpStr, sSplitChar := ',', iParts => SplitParts);
IF SplitParts=3 THEN

RESI.RESI_LEDx_Mode[1]:=Parts[0];
RESI.RESI_LEDx_State[1]:=TO_BOOL(STRING_TO_WORD(Parts[1]));

END_IF
END_IF

4:
IF LEFT(sReadCmd,6)='GLED2:' THEN

TmpStr:=MID(sReadCmd,LEN(sReadCmd)-6,7);
Parts := F_SplitString(sInput := TmpStr, sSplitChar := ',', iParts => SplitParts);
IF SplitParts=3 THEN

RESI.RESI_LEDx_Mode[2]:=Parts[0];
RESI.RESI_LEDx_State[2]:=TO_BOOL(STRING_TO_WORD(Parts[1]));

END_IF
END_IF

5:
IF LEFT(sReadCmd,6)='GLED3:' THEN

TmpStr:=MID(sReadCmd,LEN(sReadCmd)-6,7);
Parts := F_SplitString(sInput := TmpStr, sSplitChar := ',', iParts => SplitParts);
IF SplitParts=3 THEN

RESI.RESI_LEDx_Mode[3]:=Parts[0];
RESI.RESI_LEDx_State[3]:=TO_BOOL(STRING_TO_WORD(Parts[1]));

END_IF
END_IF

6:
IF LEFT(sReadCmd,6)='GLED4:' THEN

TmpStr:=MID(sReadCmd,LEN(sReadCmd)-6,7);
Parts := F_SplitString(sInput := TmpStr, sSplitChar := ',', iParts => SplitParts);
IF SplitParts=3 THEN

RESI.RESI_LEDx_Mode[4]:=Parts[0];
RESI.RESI_LEDx_State[4]:=TO_BOOL(STRING_TO_WORD(Parts[1]));

END_IF
END_IF

7:
IF LEFT(sReadCmd,5)='GRTC:' THEN

TmpStr:=MID(sReadCmd,LEN(sReadCmd)-5,6);
RESI.RESI_RTC_CurrentTime:=TmpStr;

END_IF

;
END_CASE
iState:=100;

CODESYS® ASCII driver
for RESI-T4 controller

AN-26

Listing of function block SERIAL_LINE:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

9999: //Closing the ports
IF hCom <> 0 THEN

comClose(xExecute:= TRUE, hCom:= hCom);
IF comClose.xDone THEN

comClose(xExecute:= FALSE);
Fb_Init(FALSE, FALSE);

ELSIF comClose.xError THEN
errError:= comClose.eError;
comClose(xExecute:= FALSE);
iState:= 32767;

END_IF
ELSE

Fb_Init(FALSE, FALSE);
END_IF

32767:
RESI.RESI_IsOnline:=FALSE;
;

END_CASE

CODESYS® ASCII driver
for RESI-T4 controller

AN-27

Now we add an action to the function block named SERIAL_LINE named CLOSE
Right-Click on the FB SERIAL_LINE in the Device tree and select Add Object → Action

Enter the Listing into this function

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Listing of function block action SERIAL_LINE.CLOSE:

iState:= 9999;
THIS^();

CODESYS® ASCII driver
for RESI-T4 controller

AN-28

Now we add a method to the function block named SERIAL_LINE named FB_init
Right-Click on the FB SERIAL_LINE in the Device tree and select Add Object → Method

Enter the Listing into this function

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Listing of function block method SERIAL_LINE.FB_init:

METHOD Fb_init : BOOL
VAR_INPUT

bInitRetains : BOOL;
 bInCopyCode : BOOL;
END_VAR

CODESYS® ASCII driver
for RESI-T4 controller

AN-29

Last we have to write the main program. Open the PROGAM block PLC_PRG and enter the following listing

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Listing of PLC_PRG:

PROGRAM PLC_PRG
VAR

RESI_ASCII: SERIAL_LINE;
END_VAR

//set the special parameters for the port
RESI_ASCII(

udiPort:= 1, //Port number
udiBaudrate:= 9600, //bandwidth
paParity:= COM.PARITY.NONE, //the parity is optional
sbStopBits:= COM.STOPBIT.ONESTOPBIT,
udiByteSize := 8); //the stopbits are optional);

CODESYS® ASCII driver
for RESI-T4 controller

AN-30

Now we have programmed everything and our device tree should look like this. Change the settings of the MainTask to 10ms cyclic.
And everything is almost ready for testing...

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

CODESYS® ASCII driver
for RESI-T4 controller

AN-31

The last issue is to install the right libraries. Open the library manager and select the library CAA SerialCom. Install it. Then install CAA Memory. Then install
CAA Types Extern. Finished.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

CODESYS® ASCII driver
for RESI-T4 controller

AN-32

Click on Online → Login. Select Login with download.
After successful download click on the start button. Now the application runs in our controller.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

If everything runs fine, your output should look like this, if you double click on the global variable list RESI

CODESYS® ASCII driver
for RESI-T4 controller

AN-33

Using the ASCII driver

RESI_IsOnline must be TRUE. This indicates, that the CODESYS communicates with the RESI IoT Controller.

If a communication error arises the variable RESI_Errors is incremented. This can happen sometimes. This is no big deal.
RESI_ErrorsLastCmd will show the last command that causes this error.

RESI_Type and RESI_Version are strings which show the current type and software version of our controller.

RESI_DIP_Switch gives back the current setting of the 8-pin DIP switch in the cover. Each bit stands for a different DIP Switch (Bit 0=DIP 1, 1=DIP2,..,7=DIP 8)
I
RESI_LEDx_Mode is a array with 4 elements showing the current mode of the LEDs:

OFF: LED is OFF
ON: LED is ON
INV: LED was inverted
PULSE: LED does one time pulse
BLINK: LED blinks cyclic symmetrically
FLASH: LED blinks cyclic asymmetrically

Index 1 is the GREEN, 2=WHITE, 3=RED and 4 is the YELLOW LED

To set a new mode write to RESI_LEDx_NewMode a STRING from the following list:
OFF: Switch LED to OFF
ON: Switch LED to ON
BLINKVERYSLOW: LED blinks with 3s rhythm
BLINKSLOW: LED blinks with 1s rhythm
BLINKFAST: LED blinks with 0.1s rhythm
PULSEVERYSLOW: LED is ON for 3s and then OFF forever
PULSESLOW: LED is ON for 1s and then OFF forever
PULSEFAST: LED is ON for 0.1s and then OFF forever
FLASHVERYSLOW: LED is ON for 0.6s and then OFF for 5.4s, cycle will be repeated forever
FLASHSLOW: LED is ON for 0.3s and then OFF for 1.7s, cycle will be repeated forever
FLASHFAST: LED is ON for 0.03s and then OFF for 0.17s, cycle will be repeated forever

RESI_RTC_CurrentTime return the current date and time and weekday of the integrated RTC with accu buffering.
The string format is:

Format: YMD,<Year:24-99>,<Month:1-2>,<Day:1-31>,HMS:<Hour:0-23>,<Minute:0.59>,<Seconds:0-59>,
<DayOfWeek:MON,TUE,WED,THU,FRI,SAT,SUN>,
DOK,<1=Date is OK,0=Date is NOK>,TOK,<1=Time is OK,0=Time is NOK>
e.g. YMD,24,2,29,HMS:14:56:34,THU

You can set this RTC writing a string to RESI_RTC_NewTime.
Format: YMD,<Year:24-99>,<Month:1-2>,<Day:1-31>,HMS:<Hour:0-23>,<Minute:0.59>,<Seconds:0-59>,
<DayOfWeek:MON,TUE,WED,THU,FRI,SAT,SUN>
e.g. YMD,24,2,29,HMS:14:56:34,THU

You can download this demo software from our homepage www.RESI.cc

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

http://www.RESI.cc/

RESI Informatik & Automation GmbH
Altenmarkt 29, A-8551 Wies, AUSTRIA

help@RESI.cc www.RESI.cc

	T4-C4 IoT CONTROLLER
	PERFECTION
	CONTENT
	PREREQUISITES
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	CONTACT

