G	•				
CONVERTER STATUS	3x05051	0,0x0000		UINT16	
	4x05051	B:00 00		R/O	
	1:5050				
DIP SWITCH	3x10010	15,0x000F		UINT16	
	4×10010	B:00 0F		R/O	
Detume the comment action of the Di	I:10009				
Returns the current setting of the Di For ULTRA SLIM IOS The current value of the DIP switche Bit 0: DIP Switch 1 (=0:OFF, =1:ON Bit 1: DIP Switch 2 (=0:OFF, =1:ON Bit 2: DIP Switch 3 (=0:OFF, =1:ON Bit 3: DIP Switch 4 (=0:OFF, =1:ON SOFTWARE RESET	00:				
		0.000	NI/A-NIO CHANICE	DIT	VEC
RESET	1x06001 2x06001	0,0x00 B:00	N/A:NO CHANGE	BIT R/W	YES
	1:6000	В.00		FC/VV	
Performs a software reset, whenever		ost writes to this register 1, the module executes a soft res	et (reboot).		
RESET	3x06001	0,0x0000	N/A:NO CHANGE	UINT16	YES
RESET	4x06001	B:00 00	N/A.NO CHANGE	R/W	163
	1:6000	B.00 00		10,00	
Performs a software reset, whenever		ost writes to this register 1, the module executes a soft res	et (reboot).		
PRODUCT DATA		<u> </u>	· · ·		
HW_GROUP	3x65201	8336,0x2090		UINT16	
i.iGiteGi	4x65201	B:20 90		R/O	
	1:65200				
This is the group of hardware of the	current product				
SW_GROUP	3x65202	4096,0x1000		UINT16	
_	4x65202	B:10 00		R/O	
	1:65201				
This is the group of software of the o	current product				
SW_VERSION	3x65203	4352,0x1100		UINT16	
	4x65203	B:11 00		R/O	
	1:65202				
This is the second of the second of	- Fully - Community	SW VERSION:1.1.0			
This is the cuirrent software version					
SW_AUTHOR	3x65204	18771,0x4953		UINT16	
	4x65204	B:49 53		R/O	
	1:65203				
This is the cuirrent software author of	of the firmware				
MODBUS SETTINGS					
	2,465,222	CEE2E OVEEEE	NIA NO CHANCE	LUNITAC	NO
UNIT_ID	3x65222 4x65222	65535,0xFFFF B:FF FF	N/A:NO CHANGE	UINT16 R/W	NO
	1:65221	D.FF FF		K/VV	
		UNIT ID:255			
		OINIT ID.233			

f the host reads this register, the current programmed unit ID is returned. All values above unit ID 255 define also the unit ID 255.

If the host write a new value into this register, the new value will be stored in the FLASH as the new unit ID. The new unit ID is activated after a power off/power on cycle or a software reboot of the module. The host can execute a reboot in writing to the register RESET SYSTEM.

NOTE:DIP switch 4 must set to OFF to activate this unit ID, otherwise the unit ID is 255.

HINT: This settings will be active after you repower or reset your device!!

BAUD_RATE	3x65223 4x65223 I:65222	4294967295,0xFFFFFFF B:FF FF FF	38400	38400	UINT32 R/W	NO
		57600Bd		ENTER BAUD RATE		

This is the current configured baud rate for DIP switch mode DIP1=ON, DIP2=ON (default is 57600bd)

DIP switch settings:

DIP1-DIP2

OFF-OFF:9600bd

ON-OFF:19200bd

OFF-ON:38400bd

ON-ON:default 57600bd or the defined baud rate

Valid baud rates are:

300bd

600bd

1200bd 2400bd

4800bd

9600bd

19200bd

38400bd

all other:57600bd

HINT: This settings will be active after you repower or reset your device!!

3	· · · · · · · · · · · · · · · · · · ·				
PARITY	3x65225	65535,0xFFFF	N/A:NO CHAN		NO
	4x65225	B:FF FF		R/W	
	1:65224				
		NO PARITY	SELECT PAR	RITY	

If the register is read out, the currently set parity of the serial interface is returned.

Writing a value to this register will change the new parity in FLASH. This will only take effect after a restart of the module. This can be triggered by writing to the RESET SYSTEM register.

Parity values are

0: no parity

1: even parity

2: odd parity

STOP BITS	3x65226 4x65226 I:65225	65535,0xFFFF B:FF FF	N/A:NO CHANGE	UINT16 R/W	NO
		ONE STOPBIT	SELECT STOPBITS		

f the register is read out, the currently set number of stop bits of the serial interface is returned.
Writing a value to this register will change the new number of stop bits in the FLASH. This will only take effect after a restart of the module. This can be triggered by writing to the RESET SYSTEM register.

Values for stop bits are

1: one stop bit

2: two stop bits

GET VERSION	ASCII	#VERSION <cr></cr>	ASCII
	READ	#VER <cr></cr>	
	COMMAND	Result:	
		#VERSION: <versionhi>,<versionmed>,<versionlo><cr></cr></versionlo></versionmed></versionhi>	
	TX	#VERSION <cr></cr>	
	RX	#255,VERSION:1.1.0 <cr></cr>	
		Current SW version:1.1.0	
Returns the version number of the mo VersionHi: Version number high (125 VersionMed: Version number medium VersionLo: Version number low (125	i5) (1255)		
GET TYPE	ASCII	#TYPE <cr></cr>	ASCII
	READ	#TYP <cr></cr>	
	COMMAND	Result:	
		#TYPE: <type><cr></cr></type>	
	TX	#TYPE <cr></cr>	
	RX	#255,TYPE:RESI-1S0-SIO <cr></cr>	
		Current module type:RESI-1S0-SIO	
Returns the current module type	1		,
GET OWNER	ASCII	#OWNER <cr></cr>	ASCII
32. 3WHZ.K	READ	#OWN <cr></cr>	7.00
	COMMAND	Result:	
		#OWNER: <owner><cr></cr></owner>	
	TX	#OWNER <cr></cr>	
	RX	#255,OWNER:RESI <cr></cr>	
		Current owner:RESI	
Returns the current owner of the mode	ule		
GET CREATOR	ASCII	#CREATOR <cr></cr>	ASCII
	READ	#CRE <cr></cr>	
	COMMAND	Result:	
		#CREATOR: <creator><cr></cr></creator>	
	TX	#CREATOR <cr></cr>	
	RX	#255,CREATOR:DI HC SIGL,MSC <cr></cr>	
		Current creator:DI HC SIGL,MSC	
Returns the current creator of the mod	dule		
GET COPYRIGHT	ASCII	#COPYRIGHT <cr></cr>	ASCII
	READ	#COPY <cr></cr>	7.00
	COMMAND	Result:	
		#COPYRIGHT: <copyright><cr></cr></copyright>	
	TX	#COPYRIGHT <cr></cr>	
	RX	#255,COPYRIGHT:2016,2020 BY RESI AND DI HC SIGL,MSC WWW.RESI.CC <cr></cr>	
ļ.		Current copyright:2016,2020 BY RESI AND DI HC SIGL,MSC WWW.RESI.CC	

GET DIP SWITCH	ASCII	#GET DIP <cr></cr>	ASCII	
	READ	#GDIP <cr></cr>		
	COMMAND	Result:		
		#GDIP: <dipswitchdec>,<dipswitchhex><cr></cr></dipswitchhex></dipswitchdec>		
	TX	#GET DIP <cr></cr>		
	RX	#255,GDIP:15,0xF <cr></cr>		
		Current DIP SWITCH settings:1111		

Returns the current setting of the Dip switches as decimal number and as hexadecimal number. DIPSwitchDec

DIPSwitchHex

The current value of the DIP switches:
Bit 0: DIP Switch 1 (=0:OFF, =1:ON)
Bit 1: DIP Switch 2 (=0:OFF, =1:ON)
Bit 2: DIP Switch 3 (=0:OFF, =1:ON)
Bit 3: DIP Switch 4 (=0:OFF, =1:ON)

ASCII COMMANDS

SET MODBUS ADDRESS	ASCII	#SET MODBUS ADDRESS: <unitid><cr></cr></unitid>	ASCII	NO
	WRITE	#SMBADR: <unitid><cr></cr></unitid>		
	COMMAND	Result:		
		#OK <cr></cr>		
	UNITID	1		
	TX	#SET MODBUS ADDRESS:1 <cr></cr>		
	RX	N/A		

Redefines the unit ID of the module. This change will affect the MODBUS/RTU communication immediately. As a Unit IO you can use the values 0dec to 255dec.

HINT: The new settings are activated after a system reboot or power off on cycle!

SET MODBUS BAUDRATE	ASCII	#SET MODBUS BAUDRATE: <baud><cr></cr></baud>	ASCII	NO
	WRITE	#SMBBAUD: <baud><cr></cr></baud>		
	COMMAND	Result:		
		#OK <cr></cr>		
	BAUD	57600:57600BD		
	TX	#SET MODBUS BAUDRATE:57600 <cr></cr>		
	RX	N/A		

Sets a new baudrate for the serial interface, if DIP Switches DIP1=ON and DIP2=ON. The following baudrates are allowed:

300bd

600bd 1200bd

2400bd

4800bd

9600bd 19200bd

38400bd

all others are interpreted as 57600bd

HINT: The new setup parameters will be active after a restart of the module.

SET MODBUS PARITY	ASCII WRITE COMMAND	#SET MODBUS PARITY: <parity><cr> #SMBPAR:<parity><cr> Result:</cr></parity></cr></parity>	ASCII	NO
		#OK <cr></cr>		
	PARITY	NONE:NO PARITY		
	TX	#SET MODBUS PARITY:NONE <cr></cr>		
	RX	N/A		

Sets a new parity for the serial interface. MBParity: NONE: no parity EVEN: even parity ODD: odd parity

HINT: The new setup parameters will be active after a restart of the module.

SET MODBUS STOPS	ASCII	#SET MODBUS STOP: <stopbit><cr></cr></stopbit>	ASCII	NO
	WRITE	#SETMBSTOP: <stopbit><cr></cr></stopbit>		
	COMMAND	Result:		
		#OK <cr></cr>		
	STOPBIT	ONE:ONE STOPBIT		
	TX	#SET MODBUS STOP:ONE <cr></cr>		
	RX	N/A		

Sets a new amount of stop bits for the serial interface.
MBStops
ONE: one stop bit
TWO: two stop bits

HINT: The new setup parameters will be active after a restart of the module.

SET MODBUS PARAMS	ASCII	#SET MODBUS PARAMS: <unitid>,<baud>,<parity>,<stopbit><cr></cr></stopbit></parity></baud></unitid>	ASCII	NO
	WRITE	#SMBPARAMS: <unitid>,<baud>,<parity>,<stopbit><cr></cr></stopbit></parity></baud></unitid>		
	COMMAND	Result:		
		#OK <cr></cr>		
	UNITID	1		
	BAUD	57600:57600BD		
	PARITY	NONE:NO PARITY		
	STOPBIT	ONE:ONE STOPBIT		
	TX	#SET MODBUS PARAMS:1,57600,NONE,ONE <cr></cr>		
	RX	N/A		
Sets all parameters for serrial interface				
GET MODBUS ADDRESS	ASCII	#GET MODBUS ADDRESS <cr></cr>	ASCII	
	READ	#GMBADR <cr></cr>		
	COMMAND	Result:		
		#GMBADR: <mbunitdec>,<mbflashdec>,<mbunithex>,<mbflashhex><cr></cr></mbflashhex></mbunithex></mbflashdec></mbunitdec>		
	TX	#GET MODBUS ADDRESS <cr></cr>		
	RX	#255,GMBADR:255,0xFF,65535,0xFFFF <cr></cr>		
		Current MODBUS unit ID for DIP4=OFF:255,0xFF,65535,0xFFFF		

Shows the current used MODBUS/RTU or ASCII unit address and shows also the stored unit address in the FLASH memory, which is only used if the DIP switch for the bus address is set to 0.

MBUnitDec,MBUnitHex

The current used MODBUS/RTU unit or ASCII address for communication

MBFLASHDec, MBFLASHHex

The internal stored MODBUS/RTU unit address or ASCII address from the FLASH memory, if the DIP switch DIP3 is OFF.

GET MODBUS BAUDRATE	ASCII	#GET MODBUS BAUDRATE <cr></cr>	ASCII	
	READ	#GMBBAUD <cr></cr>		
	COMMAND	Result:		
		#GMBBAUD: <baudrate><cr></cr></baudrate>		
	TX	#GET MODBUS BAUDRATE <cr></cr>		
	RX	#255,GMBBAUD:57600 <cr></cr>		
		Current baudrate for DIP1+2=ON:57600		

Returns the current defined baud rate for the serial interface, if DIP switches DIP1=ON and DIP2=ON.

The following baudrates are allowed: 300bd 1200bd

2400bd

4800bd

9600bd 19200bd

38400bd

all others are interpreted as 57600bd

GET MODBUS PARITY	ASCII	#GET MODBUS PARITY <cr></cr>	ASCII	
	READ	#GMBPAR <cr></cr>		
	COMMAND	Result:		
		#GMBPAR: <mbparity><cr></cr></mbparity>		
	TX	#GET MODBUS PARITY <cr></cr>		
	RX	#255,GMBPAR:NONE <cr></cr>		
		Current parity:NONE		

Shows the current configured parity of the serial interface.

MBParity
NONE: no parity
EVEN: even parity
ODD: odd parity

GET MODBUS STOP	ASCII	#GET MODBUS STOP <cr></cr>	ASCII
	READ	#GMBSTOP <cr></cr>	
	COMMAND	Result:	
		#GMBSTOP: <mbstop><cr></cr></mbstop>	
	TX	#GET MODBUS STOP <cr></cr>	
	RX	#255,GMBSTOP:ONE <cr></cr>	
		Current stopbit(s):ONE	

Returns the current configured amount of stop bits for the serial interface.

MBStops ONE: one stop bit TWO: two stop bits

GET MODBUS PARAMS	ASCII	#GET MODBUS PARAMS <cr></cr>	ASCII	
	READ	#GMBPARAMS <cr></cr>		
	COMMAND	Result:		
		#GMBPARAMS: <mbunitdec>,<mbflashdec>,<mbunithex>,<mbflashhex>,</mbflashhex></mbunithex></mbflashdec></mbunitdec>		
		<mbbaudratedec>,<mbbaudratehex>,<mbparity>,<mbstops><cr></cr></mbstops></mbparity></mbbaudratehex></mbbaudratedec>		
	TX	#GET MODBUS PARAMS <cr></cr>		
	RX	#255,GMBPARAMS:255,0xFF,65535,0xFFFF,57600,0xE100,NONE,ONE <cr></cr>		
		Current MODBUS unit ID used:255		
		Current MODBUS unit ID in FLASH:65535		
		Current baudrate in FLASH:57600		
		Current parity in FLASH:NONE		
		Current stopbit(s) in FLASH:ONE		
Returns the complete settings for s	erial interface			
ASCII COMMANDS				
RESET	ASCII	#RESET <cr></cr>	ASCII	NO
	WRITE	#RST <cr></cr>		
	WRITE COMMAND	Result:		
	COMMAND	Result: #OK <cr></cr>		
		Result:		
	COMMAND	Result: #OK <cr></cr>		
Executes a software reset (Reboot)	COMMAND TX RX	Result: #OK <cr> #RESET<cr></cr></cr>		
· · · · · · · · · · · · · · · · · · ·	TX RX of the module.	Result: #OK <cr> #RESET<cr> N/A</cr></cr>	ASCII	NO
	TX RX) of the module. ASCII	Result: #OK <cr> #RESET<cr> N/A #FACTORY RESET<cr></cr></cr></cr>	ASCII	NO
	COMMAND TX RX of the module. ASCII WRITE	Result: #OK <cr> #RESET<cr> N/A #FACTORY RESET<cr> #FRST<cr></cr></cr></cr></cr>	ASCII	NO
<u> </u>	TX RX) of the module. ASCII	Result: #OK <cr> #RESET<cr> N/A #FACTORY RESET<cr></cr></cr></cr>	ASCII	NO
<u> </u>	COMMAND TX RX of the module. ASCII WRITE	Result: #OK <cr> #RESET<cr> N/A #FACTORY RESET<cr> #FRST<cr> Result:</cr></cr></cr></cr>	ASCII	NO
Executes a software reset (Reboot)	COMMAND TX RX of the module. ASCII WRITE COMMAND	Result: #OK <cr> #RESET<cr> N/A #FACTORY RESET<cr> #FRST<cr> Result: #OK<cr></cr></cr></cr></cr></cr>	ASCII	NO

RESI COIIIIgurator Schiilos RESI-XX	X-310,E111-V30			INID RESI-2RTD-SI	O,E III Negisters
2RTD STATUS	3x05052 4x05052 I:5051	0,0x0000 B:00 00		SINT16 R/O	
Shows the internal converter status: =0: Everything is ok !=0: Internal converter problem or error					
MEASUREMENT DATA					
CH1:VALID_TEMP	3x00001 4x00001 I:0	262,0x0106 B:01 06		SINT16 R/O	
		26,2			
Current valid temperature of the 1st channel Value: temperature*10 Unit: in the temperature unit set by CH1_UN This is the last valid measured temperature.	IT	urement in the past, the value -999.0 -> -9990 in °C w	II be returned.		
CH2:VALID_TEMP	3x00002 4x00002 I:1	-9990,0xD8FA B:D8 FA		SINT16 R/O	
Current valid temperature of the 2nd channed Value: temperature*10 Unit: in the temperature unit set by CH2_UN This is the last valid measured temperature.	IT	-999,0 urement in the past, the value -999.0 -> -9990 in °C w	II be returned.		
CH1:REAL_TEMP	3x00003 4x00003 I:2	262,0x0106 B:01 06		SINT16 R/O	
		26,2			
Last measured temperature value for the 1s Value: temperature*10 Unit: in the temperature unit set by CH1_UN This is the last measured temperature on the If the measurement result is completely inva-999.0 -> -9990 in °C.	IT e ADC. If the was an errone	eous conversion, this value will not be stored into the revalue	egister VALID_TEMF	o.	
CH2:REAL_TEMP	3x00004 4x00004 I:3	-9990,0xD8FA B:D8 FA		SINT16 R/O	
Last measured temperature value for the 2n Value: temperature*10 Unit: in the temperature unit set by CH2_UN This is the last measured temperature on the If the measurement result is completely invalues -999.0 -> -9990 in °C.	IT e ADC. If the was an errone	eous conversion, this value will not be stored into the revalue	egister VALID_TEMF).	
CH1:AVG_TEMP	3x00005 4x00005 I:4	262,0x0106 B:01 06		SINT16 R/O	

26,2

Last average temperature calculated for sensor channel 1. Value: temperature*10

Unit: in the temperature unit set by CH1 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 -> -9990 in °C.

CH2:AVG_TEMP	3x00006 4x00006 I:5	-9990,0xD8FA B:D8 FA	SINT16 R/O	
		-999,0		

Last average temperature calculated for sensor channel 2.

Value: temperature*10

Unit: in the temperature unit set by CH2 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 -> -9990 in °C.

CH1:STATUS	3x00007	1,0x0001		UINT16	
	4x00007	B:00 01		R/O	
	l:6				
		CH1:Sensor status bits:0000.0000.0000.0001			
		CH1:BIT0:VALID:1			
		CH1:BIT1:ADC OUT OF RANGE:0			
		CH1:BIT2:SENSOR UNDER RANGE:0			
		CH1:BIT3:SENSOR OVER RANGE:0			
		CH1:BIT6:HART ADC OUT OF RANGE:0			
		CH1:BIT7:SENSOR HART FAULT:0			

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED lanore this bit

Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

CH2:STATUS	3x00008 4x00008 I:7	203,0x00CB B:00 CB		UINT16 R/O	
		CH2:Sensor status bits:0000.0000.1100.1011			
		CH2:BIT0:VALID:1			
		CH2:BIT1:ADC OUT OF RANGE:1			
		CH2:BIT2:SENSOR UNDER RANGE:0			
		CH2:BIT3:SENSOR OVER RANGE:1			
		CH2:BIT6:HART ADC OUT OF RANGE:1			
		CH2:BIT7:SENSOR HART FAULT:1			

Value: Each bit has an individual meaning

Explanation of status bits: Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond $\pm 1.125 \cdot VREF/2$

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

=1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

MEASUREMENT DATA	MEASUREMENT DATA						
CH1:VALID_TEMP	3x00101 4x00101 I:100	2627832,0x002818F8 B:00 28 18 F8			SINT32 R/O		
		26,27832					

Current valid temperature of the 1st channel.

Value: temperature*10000

Unit: in the temperature unit set by CH1 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 -> -99900000 in °C will be returned.

CH2:VALID_TEMP	3x00103 4x00103 I:102	-99900000,0xFA0BA5A0 B:FA 0B A5 A0		SINT32 R/O	
		-999,00000			
Comment or alial temperature of the Cond of	امسما				

Current valid temperature of the 2nd channel.

Value: temperature*10000

Unit: in the temperature unit set by CH2 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 -> -99900000 in °C will be returned.

CH1:REAL_TEMP	3x00105 4x00105 I:104	2627832,0x002818F8 B:00 28 18 F8	SINT32 R/O	
		26,27832		

Last measured temperature value for the 1st channel.

Value: temperature*10000

Unit: in the temperature unit set by CH1 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 -> -99900000 in °C.

CH2:REAL_TEMP	3x00107 4x00107 I:106	-99900000,0xFA0BA5A0 B:FA 0B A5 A0		SINT32 R/O	
		-999,00000			

Last measured temperature value for the 2nd channel.

Value: temperature*10000

Unit: in the temperature unit set by CH2 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 -> -99900000 in °C.

CH1:AVG_TEMP	3x00109 4x00109 I:108	2626949,0x00281585 B:00 28 15 85		SINT32 R/O	
		26,26949			

Last average temperature calculated for sensor channel 1.

Value: temperature*10000

Unit: in the temperature unit set by CH1 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 -> -99900000 in °C.

CH2:AVG_TEMP	3x00111 4x00111 I:110	-99900000,0xFA0BA5A0 B:FA 0B A5 A0		SINT32 R/O	
		-999,00000			

Last average temperature calculated for sensor channel 2. Value: temperature*10000 Unit: in the temperature unit set by CH2_UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 -> -99900000 in °C.

CH1:STATUS	3x00113 4x00113 I:112	1,0x00000001 B:00 00 00 01	UINT32 R/O
		CH1:Sensor status bits:0000.0000.0001	
		CH1:BIT0:VALID:1	
		CH1:BIT1:ADC OUT OF RANGE:0	
		CH1:BIT2:SENSOR UNDER RANGE:0	
		CH1:BIT3:SENSOR OVER RANGE:0	
		CH1:BIT6:HART ADC OUT OF RANGE:0	
		CH1:BIT7:SENSOR HART FAULT:0	

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED lanore this bit

Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

CH2:STATUS	3x00115 4x00115 I:114	203,0x000000CB B:00 00 00 CB			UINT32 R/O	
		CH2:Sensor status bits:0000.0000.1100.1011	H2:Sensor status bits:0000.0000.1100.1011			
		CH2:BIT0:VALID:1	H2:BIT0:VALID:1			
		CH2:BIT1:ADC OUT OF RANGE:1	H2:BIT1:ADC OUT OF RANGE:1			
		CH2:BIT2:SENSOR UNDER RANGE:0				
		CH2:BIT3:SENSOR OVER RANGE:1				
		CH2:BIT6:HART ADC OUT OF RANGE:1				
		CH2:BIT7:SENSOR HART FAULT:1				

Value: Each bit has an individual meaning

Explanation of status bits: Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond $\pm 1.125 \cdot VREF/2$

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

=1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

MEASUREMENT DATA							
CH1:VALID_TEMP	3x00201 4x00201 I:200	2627832,0x002818F8 B:18 F8 00 28			SINT32R R/O		
		26,27832					

Current valid temperature of the 1st channel.

Value: temperature*10000

Unit: in the temperature unit set by CH1 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 -> -99900000 in °C will be returned.

3x00203 4x00203 I:202	-99900000,0xFA0BA5A0 B:A5 A0 FA 0B			SINT32R R/O	
	-999,00000				
4	lx00203	B:A5 A0 FA 0B :202	B:A5 A0 FA 0B :202	B:A5 A0 FA 0B :202	R/O R/O

Current valid temperature of the 2nd channel.

Value: temperature*10000

Unit: in the temperature unit set by CH2 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 -> -99900000 in °C will be returned.

CH1:REAL_TEMP	3x00205 4x00205 I:204	2627832,0x002818F8 B:18 F8 00 28	SINT32R R/O	
		26,27832		

Last measured temperature value for the 1st channel.

Value: temperature*10000

Unit: in the temperature unit set by CH1 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 -> -99900000 in °C.

CH2:REAL_TEMP	3x00207 4x00207 I:206	-99900000,0xFA0BA5A0 B:A5 A0 FA 0B		SINT32R R/O	
		-999,00000			

Last measured temperature value for the 2nd channel.

Value: temperature*10000

Unit: in the temperature unit set by CH2 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 -> -99900000 in °C.

	3x00209 4x00209 I:208	2626949,0x00281585 B:15 85 00 28	SINT32R R/O	
		26,26949		

Last average temperature calculated for sensor channel 1.

Value: temperature*10000

Unit: in the temperature unit set by CH1 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 -> -99900000 in °C.

CH2:AVG_TEMP	3x00211 4x00211 I:210	-99900000,0xFA0BA5A0 B:A5 A0 FA 0B		SINT32R R/O	
		-999,00000			

Last average temperature calculated for sensor channel 2. Value: temperature*10000 Unit: in the temperature unit set by CH2_UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 -> -99900000 in °C.

CH1:STATUS	3x00213 4x00213 I:212	1,0x00000001 B:00 01 00 00	UINT32R R/O
		CH1:Sensor status bits:0000.0000.00001	
		CH1:BIT0:VALID:1	
		CH1:BIT1:ADC OUT OF RANGE:0	
		CH1:BIT2:SENSOR UNDER RANGE:0	
		CH1:BIT3:SENSOR OVER RANGE:0	
		CH1:BIT6:HART ADC OUT OF RANGE:0	
		CH1:BIT7:SENSOR HART FAULT:0	

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED lanore this bit

Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

CH2:STATUS	3x00215 4x00215 I:214	203,0x000000CB B:00 CB 00 00		UINT32R R/O	
		CH2:Sensor status bits:0000.0000.1100.1011			
		CH2:BIT0:VALID:1	H2:BIT0:VALID:1		
		CH2:BIT1:ADC OUT OF RANGE:1			
		CH2:BIT2:SENSOR UNDER RANGE:0			
		CH2:BIT3:SENSOR OVER RANGE:1			
		CH2:BIT6:HART ADC OUT OF RANGE:1			
		CH2:BIT7:SENSOR HART FAULT:1			

Value: Each bit has an individual meaning

Explanation of status bits: Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond $\pm 1.125 \cdot VREF/2$

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

=1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

MEASUREMENT DATA	MEASUREMENT DATA								
CH1:VALID_TEMP	3x00301 4x00301 I:300	26.278320,0x41D23A00 B:41 D2 3A 00			FLOAT32 R/O				
		26,278320							

Current valid temperature of the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH2:VALID_TEMP	3x00303 4x00303 l:302	-999.000000,0xC479C000 B:C4 79 C0 00		FLOAT32 R/O	
		-999,000000			
Company to all all tamana anatoma af the a Orad ala ana	امما				

Current valid temperature of the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2_UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH1:REAL_TEMP	3x00305 4x00305 I:304	26.278320,0x41D23A00 B:41 D2 3A 00	FLOAT32 R/O	
		26,278320		

Last measured temperature value for the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1_UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH2:REAL_TEMP	3x00307 4x00307 I:306	-999.000000,0xC479C000 B:C4 79 C0 00		FLOAT32 R/O	
		-999,000000			

Last measured temperature value for the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH1:AVG_TEMP	3x00309 4x00309 I:308	26.269491,0x41D227EB B:41 D2 27 EB	FLOAT32 R/O	
		26,269491		

Last average temperature calculated for sensor channel 1.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH2:AVG_TEMP	3x00311 4x00311 I:310	-999.000000,0xC479C000 B:C4 79 C0 00		FLOAT32 R/O	
		-999,000000			

Last average temperature calculated for sensor channel 2. Value: temperature Unit: in the temperature unit set by CH2_UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH1:STATUS	3x00313 4x00313 I:312	1.000000,0x3F800000 B:3F 80 00 00	FLOAT32 R/O
		CH1:Sensor status bits:0000.0000.0000.0001	
		CH1:BIT0:VALID:1	
		CH1:BIT1:ADC OUT OF RANGE:0	
		CH1:BIT2:SENSOR UNDER RANGE:0	
		CH1:BIT3:SENSOR OVER RANGE:0	
		CH1:BIT6:HART ADC OUT OF RANGE:0	
		CH1:BIT7:SENSOR HART FAULT:0	

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

lanore this bit

- Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.
- =0: Everything is ok
- Bit 7: SENSOR HARD FAULT
- =1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.
- =0: Everything is ok

Bits 8..15: ALWAYS ZERO

CH2:STATUS	3x00315 4x00315 I:314	203.000000,0x434B0000 B:43 4B 00 00			FLOAT32 R/O	
		CH2:Sensor status bits:0000.0000.1100.1011				
		CH2:BIT0:VALID:1	2:BIT0:VALID:1			
		CH2:BIT1:ADC OUT OF RANGE:1				
		CH2:BIT2:SENSOR UNDER RANGE:0				
		CH2:BIT3:SENSOR OVER RANGE:1				
		CH2:BIT6:HART ADC OUT OF RANGE:1				
		CH2:BIT7:SENSOR HART FAULT:1				

Value: Each bit has an individual meaning

Explanation of status bits: Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

=1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

MEASUREMENT DATA					
CH1:VALID_TEMP	3x00401 4x00401 I:400	26.278320,0x41D23A00 B:3A 00 41 D2		FLOAT32R R/O	
		26,278320			

Current valid temperature of the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH2:VALID_TEMP	3x00403 4x00403 I:402	-999.000000,0xC479C000 B:C0 00 C4 79	FLOAT32R R/O	
		-999,000000		

Current valid temperature of the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH1:REAL_TEMP	3x00405 4x00405 I:404	26.278320,0x41D23A00 B:3A 00 41 D2	FLOAT32R R/O	
		26,278320		

Last measured temperature value for the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1_UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH2:REAL_TEMP	3x00407 4x00407 I:406	-999.000000,0xC479C000 B:C0 00 C4 79		FLOAT32R R/O	
		-999,000000			

Last measured temperature value for the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH1:AVG_TEMP	3x00409 4x00409 I:408	26.269491,0x41D227EB B:27 EB 41 D2	FLOAT32R R/O	
		26,269491		

Last average temperature calculated for sensor channel 1.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH2:AVG_TEMP	3x00411 4x00411 I:410	-999.000000,0xC479C000 B:C0 00 C4 79		FLOAT32R R/O	
		-999,000000			

Last average temperature calculated for sensor channel 2. Value: temperature Unit: in the temperature unit set by CH2_UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH1:STATUS	3x00413 4x00413 I:412	1.000000,0x3F800000 B:00 00 3F 80	FLOAT32R R/O
		CH1:Sensor status bits:0000.0000.0000.0001	
		CH1:BIT0:VALID:1	
		CH1:BIT1:ADC OUT OF RANGE:0	
		CH1:BIT2:SENSOR UNDER RANGE:0	
		CH1:BIT3:SENSOR OVER RANGE:0	
		CH1:BIT6:HART ADC OUT OF RANGE:0	
		CH1:BIT7:SENSOR HART FAULT:0	

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED lanore this bit

Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

CH2:STATUS	3x00415 4x00415 I:414	203.000000,0x434B0000 B:00 00 43 4B		FLOAT32R R/O		
		CH2:Sensor status bits:0000.0000.1100.1011				
		CH2:BIT0:VALID:1	2:BIT0:VALID:1			
		CH2:BIT1:ADC OUT OF RANGE:1				
		CH2:BIT2:SENSOR UNDER RANGE:0				
		CH2:BIT3:SENSOR OVER RANGE:1				
		CH2:BIT6:HART ADC OUT OF RANGE:1				
		CH2:BIT7:SENSOR HART FAULT:1				

Value: Each bit has an individual meaning

Explanation of status bits: Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

=1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

MEASUREMENT DATA					
CH1:VALID_TEMP	3x00501 4x00501 I:500	26.278320,0x403A474000000000 B:40 3A 47 40 00 00 00 00		DOUBLE64 R/O	
		26,278320			

Current valid temperature of the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH2:VALID_TEMP	3x00505 4x00505 I:504	-999.000000,0xC08F380000000000 B:C0 8F 38 00 00 00 00 00		DOUBLE64 R/O	
		-999,000000			

Current valid temperature of the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH1:REAL_TEMP	3x00509 4x00509 I:508	26.278320,0x403A474000000000 B:40 3A 47 40 00 00 00 00	DOUBLE64 R/O	
		26.278320		

Last measured temperature value for the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1_UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH2:REAL_TEMP	3x00513 4x00513 I:512	-999.000000,0xC08F380000000000 B:C0 8F 38 00 00 00 00 00		DOUBLE64 R/O	
		-999,000000			

Last measured temperature value for the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH1:AVG_TEMP	3x00517 4x00517 I:516	26.269491,0x403A44FD5555555 B:40 3A 44 FD 55 55 55	DOUBLE64 R/O
		26,269491	

Last average temperature calculated for sensor channel 1.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH2:AVG_TEMP	3x00521 4x00521 I:520	-999.000000,0xC08F380000000000 B:C0 8F 38 00 00 00 00 00		DOUBLE64 R/O	
		-999,000000			

Last average temperature calculated for sensor channel 2. Value: temperature Unit: in the temperature unit set by CH2_UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH1:STATUS	3x00525 4x00525 I:524	1.000000,0x3FF000000000000 B:3F F0 00 00 00 00 00	DOUBLE64 R/O
		CH1:Sensor status bits:0000.0000.0001	
		CH1:BIT0:VALID:1	
		CH1:BIT1:ADC OUT OF RANGE:0	
		CH1:BIT2:SENSOR UNDER RANGE:0	
		CH1:BIT3:SENSOR OVER RANGE:0	
		CH1:BIT6:HART ADC OUT OF RANGE:0	
		CH1:BIT7:SENSOR HART FAULT:0	

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED lanore this bit

Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

CH2:STATUS	3x00529	203.000000,0x4069600000000000			DOUBLE64	
	4x00529	B:40 69 60 00 00 00 00 00			R/O	
	I:528					
		H2:Sensor status bits:0000.0000.1100.1011				
		CH2:BIT0:VALID:1	H2:BIT0:VALID:1			
		CH2:BIT1:ADC OUT OF RANGE:1				
		CH2:BIT2:SENSOR UNDER RANGE:0				
		CH2:BIT3:SENSOR OVER RANGE:1				
		CH2:BIT6:HART ADC OUT OF RANGE:1				
		CH2:BIT7:SENSOR HART FAULT:1				

Value: Each bit has an individual meaning

Explanation of status bits: Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond $\pm 1.125 \cdot VREF/2$

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

=1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

MEASUREMENT DATA					
CH1:VALID_TEMP	3x00701 4x00701 I:700	26.278320,0x403A474000000000 B:00 00 00 00 47 40 40 3A		DOUBLE64R R/O	
		26,278320			

Current valid temperature of the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH2:VALID_TEMP	3x00705 4x00705 l:704	-999.000000,0xC08F380000000000 B:00 00 00 00 38 00 C0 8F		DOUBLE64R R/O	
		-999,000000			

Current valid temperature of the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2_UNIT

This is the last valid measured temperature. If there was no valid measurement in the past, the value -999.0 in °C will be returned.

CH1:REAL_TEMP	3x00709 4x00709 I:708	26.278320,0x403A474000000000 B:00 00 00 00 47 40 40 3A	DOUBLE64R R/O	
		26,278320		

Last measured temperature value for the 1st channel.

Value: temperature

Unit: in the temperature unit set by CH1_UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH2:REAL_TEMP	3x00713 4x00713 I:712	-999.000000,0xC08F380000000000 B:00 00 00 00 38 00 C0 8F		DOUBLE64R R/O	
		-999,000000			

Last measured temperature value for the 2nd channel.

Value: temperature

Unit: in the temperature unit set by CH2 UNIT

This is the last measured temperature on the ADC. If the was an erroneous conversion, this value will not be stored into the register VALID TEMP.

If the measurement result is completely invalid this register returns the value

-999.0 in °C.

CH1:AVG_TEMP	3x00717 4x00717 l:716	26.269491,0x403A44FD5555555 B:55 55 55 55 44 FD 40 3A	DOUBLE64R R/O	
		26,269491		

Last average temperature calculated for sensor channel 1.

Value: temperature

Unit: in the temperature unit set by CH1 UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH2:AVG_TEMP	3x00721 4x00721 I:720	-999.000000,0xC08F380000000000 B:00 00 00 00 38 00 C0 8F		DOUBLE64R R/O	
		-999,000000			

Last average temperature calculated for sensor channel 2. Value: temperature Unit: in the temperature unit set by CH2_UNIT

The module adds internally all values of the register VALID_TEMP_IN_C for a configured time span. After the time span has expired, the module calculates the average temperature and stores the result into this register. After a module reboot while the first time span is running this register delivers the value -999.0 in °C.

CH1:STATUS	3x00725 4x00725 I:724	1.000000,0x3FF000000000000 B:00 00 00 00 00 3F F0	DOUBLE64R R/O
		CH1:Sensor status bits:0000.0000.0001	
		CH1:BIT0:VALID:1	
		CH1:BIT1:ADC OUT OF RANGE:0	
		CH1:BIT2:SENSOR UNDER RANGE:0	
		CH1:BIT3:SENSOR OVER RANGE:0	
		CH1:BIT6:HART ADC OUT OF RANGE:0	
		CH1:BIT7:SENSOR HART FAULT:0	

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED lanore this bit

Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

CH2:STATUS	3x00729 4x00729 I:728	203.000000,0x406960000000000 B:00 00 00 00 60 00 40 69	DOUBLE64R R/O
		CH2:Sensor status bits:0000.0000.1100.1011	
		CH2:BIT0:VALID:1	
		CH2:BIT1:ADC OUT OF RANGE:1	
		CH2:BIT2:SENSOR UNDER RANGE:0	
		CH2:BIT3:SENSOR OVER RANGE:1	
		CH2:BIT6:HART ADC OUT OF RANGE:1	
		CH2:BIT7:SENSOR HART FAULT:1	

Value: Each bit has an individual meaning

Explanation of status bits: Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond $\pm 1.125 \cdot VREF/2$

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

=1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

INTERNAL DATA						
CH1:AVG_SUM	3x00901 4x00901 I:900	262.699219,0x40706B3000000000 B:40 70 6B 30 00 00 00 00			DOUBLE64 R/O	
		262,699219				

Current sum of the average calculation for the 1st channel.

Value: temperature Unit: in °Celsius [°C]

This is current temporary temperature sum for the average calculation.

CH2:AVG_SUM	3x00905 4x00905 I:904	0.000000,0x00000000 B:00 00 00 00 00 00 00	DOUBLE64 R/O	
		0,00000		
Command access of the access and access to the	امسممام امس			

Current sum of the average calculation for the 2nd channel.

Value: temperature Unit: in °Celsius [°C]

This is current temporary temperature sum for the average calculation.

CH1:AVG_SUM	3x00909 4x00909 I:908	262.699219,0x40706B3000000000 B:00 00 00 00 6B 30 40 70	DOUBLE64R R/O	
		262.699219		

Current sum of the average calculation for the 1st channel.

Value: temperature Unit: in °Celsius [°C]

This is current temporary temperature sum for the average calculation.

CH2:AVG_SUM	3x00913 4x00913 I:912	0.000000,0x00000000 B:00 00 00 00 00 00 00	DOUBLE64R R/O	
		0,00000		

Current sum of the average calculation for the 2nd channel.

Value: temperature Unit: in °Celsius [°C]

This is current temporary temperature sum for the average calculation.

. , ,	•				
CH1:AVG_COUNTER	3x00917	10,0x000000A		UINT32	
	4x00917	B:00 00 00 0A		R/O	
	I:916				
		10.000000			

Current count of summated temperature values for the average temperature calculation for the 1st channel

Value: Count Unit: in pieces

This is the counter register for the average value calculation. Each time the average sum is updated this counter will be incremented by 1. At the end of the time span, the module divides the sum by this counter value to calculate the average temperature value.

		<u> </u>			
CH2:AVG_COUNTER	3x00919	0,0x0000000		UINT32	
	4x00919	B:00 00 00 00		R/O	
	I:918				
		0,00000			

Current count of summated temperature values for the average temperature calculation for the 2nd channel

Value: Count Unit: in pieces

This is the counter register for the average value calculation. Each time the average sum is updated this counter will be incremented by 1. At the end of the time span, the module divides the sum by this counter value to calculate the average temperature value.

CH1:AVG_COUNTER	3x00921	10,0x000000A		UINT32R	
	4x00921	B:00 0A 00 00		R/O	
	1:920				
		10,000000			
Current count of summated temperat	ure values for the average ter	mperature calculation for the 1st channel			
Value: Count Unit: in pieces	•				
This is the counter register for the av At the end of the time span, the mod	erage value calculation. Each ule divides the sum by this co	time the average sum is updated this counter will be incremented by 1. unter value to calculate the average temperature value.			
CH2:AVG_COUNTER	3x00923	0,0x0000000		UINT32R	
 	4x00923	B:00 00 00 00		R/O	
	1:922				
		0.00000			
Current count of summated temperat	ture values for the average ter	mperature calculation for the 2nd channel			
Value: Count		,			
Unit: in pieces					
This is the counter register for the av	erage value calculation. Each	time the average sum is updated this counter will be incremented by 1.			
At the end of the time span, the mod	ale divides the sum by this co	unter value to calculate the average temperature value.			
CH1:AVG_TIMER	3x00925	5630,0x000015FE		UINT32	
_	4x00925	B:00 00 15 FE		R/O	
	1:924				
		5630,000000			
Current interval downcounter timer va	alue for average calculation of				
CH2:AVG_TIMER	3x00927	5635,0x00001603		UINT32	
GI IZ. X V G_T IIVIZI X	4x00927	B:00 00 16 03		R/O	
	1:926	B.00 00 10 00		100	
		5635,000000			
Current interval downcounter timer va	alue for average calculation of				
	3x00929	5203,0x00001453		UINT32R	
CH1:AVG_TIMER	4x00929	B:14 53 00 00		R/O	
	1:928	B.14 53 00 00		R/O	
	1.928	5203,000000			
Current interval downcounter timer va	alue for average calculation of				
CH2:AVG_TIMER	3x00931	5208,0x00001458		UINT32R	
	4x00931	B:14 58 00 00		R/O	
T	1:930				
		5208,000000			
Current interval downcounter timer v					
	alue for average calculation of				
CH1:SENSOR CONFIGURAT	alue for average calculation of	f 2nd channel in Milliseconds.			
CH1:SENSOR CONFIGURAT	alue for average calculation of TION 3x06021	f 2nd channel in Milliseconds. 0,0×0000	0x0033	UINT16	NO
CH1:SENSOR CONFIGURAT	alue for average calculation of TION 3x06021 4x06021	f 2nd channel in Milliseconds.	0x0033	UINT16 R/W	NO
CH1:SENSOR CONFIGURAT	alue for average calculation of TION 3x06021	f 2nd channel in Milliseconds. 0,0×0000	0x0033		NO
Current interval downcounter timer value CH1:SENSOR CONFIGURAT CH1:SENSOR TYPE	alue for average calculation of TION 3x06021 4x06021	f 2nd channel in Milliseconds. 0,0×0000	0x0033 3:Platin Sensor 10Ω		NO

	UNIT UNIT	
This register defines the type of the connected sensor to sensor channel 1. Format Bit 03:CH1_TYPE:Sensor type 0:PT100 1:PT1000 2:PT1000 α=0.00375 3:PT10 4:PT50 5:PT200 6:PT500 7:NI120	UNIT	
Format Bit 03:CH1_TYPE:Sensor type 0:PT100 1:PT1000 2:PT1000 α=0.00375 3:PT10 4:PT50 5:PT200 6:PT500 7:NI120		
9:R Bit 4.7:CH1_CURRENT:Excitation current 0:500µA 1:1mA 2:5µA 3:10µA 4:25µA 5:50µA 6:100µA 7:250µA Bit 811:CH1_LINEARISATION:Linearization standard 0:Europe 1:America 2:Japan 3:ITS-90 4:DON'T CARE Bit 1215:CH1_UNIT:Display unit: 15, 0:Celsius [°C] 1:°Fahrenheit [°F] 2:°Kelvin [°K]		
	UINT32 R/O	
0,000000 ENTER ZERO OFFSET		
In this register you can set up a zero offset value to compensate a long cable. The value represents a temperature value as an integer value in the format °C *100000! The offset -1.23456 will be -123456. Therefore you can define an offset with five digits after the comma! This value will be stored into an internal FLASH memory. The new setting will be valid after a REBOOT of the module! IMPORTANT: The internal FLASH memory cannot be written indefinitely!		
	UINT32 R/O	
10 ENTER AVERAGE INTERVAL		

This register contains the time span in Seconds for the average calculation of the 1st sensor channel

This value will be stored into an internal FLASH memory. The new setting will be valid after a REBOOT of the module! IMPORTANT: The internal FLASH memory cannot be written indefinitely!

CH2:SENSOR CONFIGURATION

CH2:SENSOR TYPE	3x06041	0,0x0000	0x1151	UINT16	YES
	4x06041	B:00 00		R/W	
	1:6040				
		CH2:Sensor type:Platin Sensor 100Ω	1:Platin Sensor 1000Ω	TYPE	
		CH2:Excitation current:Measurement current 500µA	5:Measurement current 50µA	CURRENT	
		CH2:Linearisation curve:EUROPE	1:AMERICA	LIN.TYPE	
		CH2:Temperature unit:CELSIUS	1:FAHRENHEIT	UNIT	

This register defines the type of the connected sensor to sensor channel 2.

Format
Bit 0..3:CH1_TYPE:Sensor type
0:PT100

1:PT1000

2:PT1000 α=0.00375

3:PT10

4:PT50

5:PT200

6:PT500

7:NI120

8:NI1000-DIN43760 9:R

Bit 4..7:CH1_CURRENT:Excitation current

0:500μΑ

1:1mA 2:5µA 3:10µA 4:25µA 5:50µA

6:100µA

7:250µA Bit 8..11:CH1_LINEARISATION:Linearization standard

0:Europe

1:America

2:Japan 3:ITS-90

4:DON'T CARE

Bit 12..15:CH1 UNIT:Display unit: 15, 0:°Celsius [°C] 1:°Fahrenheit [°F]

2:°Kelvin [°K]

This value will be stored into an internal FLASH memory. The new setting will be valid after a REBOOT of the module! CH2:ZERO OFFSET 3x06042 UINT32 YES							
CH2:ZERO OFFSET	3x06042	0.0x0000000000000000000000000000000000	1500000	1,500000	UINT32	YES	
_	4x06042	B:00 00 00 00		, and the second	R/W		
	I:6041						
		0,00000		ENTER ZERO OFFSET			

In this register you can set up a zero offset value to compensate a long cable. The value represents a temperature value as an integer value in the format °C *100000! The offset -1.23456 will be -123456. Therefore you can define an offset with five digits after the comma!

This value will be stored into an internal FLASH memory. The new setting will be valid after a REBOOT of the module! IMPORTANT: The internal FLASH memory cannot be written indefinitely!

CH2:AVG_INTERVAL	3x06044 4x06044	10,0x0000000A B:00 00 00 0A	200	200	UINT32 R/W	YES
	1:6043					
		10		ENTER AVERAGE INTERVAL		

GET TEMP1	ASCII	#GET TEMP1 <cr></cr>	ASCII	
	READ	#GT1 <cr></cr>		
	COMMAND	Result:		
		#GT1: <sensor1dbl><cr></cr></sensor1dbl>		
	TX	#GET TEMP1 <cr></cr>		
	RX	#255,GT1:-999.000000 <cr></cr>		
		Current sensor temperature CH1:-999		
Returns the last measured valid	temperature on channel sensor 1	as a floating point number.SENSOR1DblThe last valid measured temperature value of sensor 1 as floating point number with a . as	a decimal point chara	acter.The
GET TEMP2	ASCII	#GET TEMP2 <cr></cr>	ASCII	
	READ	#GT2 <cr></cr>		
	COMMAND	Result:		
		#GT2: <sensor2dbl><cr></cr></sensor2dbl>		
	TX	#GET TEMP2 <cr></cr>		
	RX	#255,GT2:-999.000000 <cr></cr>		
		Current sensor temperature CH2:-999		
Returns the last measured valid	temperature on channel sensor 2	as a floating point number.SENSOR2DblThe last valid measured temperature value of sensor 2 as floating point number with a . as	a decimal point chara	acter.The
GET TEMPS	ASCII	#GET TEMPS <cr></cr>	ASCII	
	READ	#GTS <cr></cr>		
	COMMAND	Result:		
		#GTS: <sensor1dbl>,<sensor2dbl><cr></cr></sensor2dbl></sensor1dbl>		
	TX	#GET TEMPS <cr></cr>		
	RX	#255,GTS:-999.000000,-999.000000 <cr></cr>		
		Current sensor temperature CH1:-999,CH2:-999		
Deturns the last measured valid	d tomporatures on both channels as	a fleeting point number	_	-

Returns the last measured valid temperatures on both channels as a floating point number.

SENSOR1Dbl

The last valid measured temperature value of sensor 1 as floating point number with a . as a decimal point character.

SENSOR2Dbl

The last valid measured temperature value of sensor 2 as floating point number with a . as a decimal point character.

The temperature value is returned in the actual configured unit in register CHx_UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET REAL TEMP1	ASCII	#GET REAL TEMP1 <cr></cr>	ASCII	
	READ	#GRT1 <cr></cr>		
	COMMAND	Result:		
		#GRT1: <realtemp1dbl><cr></cr></realtemp1dbl>		
	TX	#GET REAL TEMP1 <cr></cr>		
	RX	#255,GRT1:-999.000000 <cr></cr>		
		Real sensor temperature CH1:-999		

Returns the last measured temperature values on sensor input 1 as a floating point number. The measured value can be an erroneous or invalid measurement result or a valid measurement result.

REALTEMP1Dbl

The last temperature measurement result from sensor 1 as floating point number with a . for the decimal point.

The temperature value is returned in the actual configured unit in register CH1_UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET REAL TEMP2	ASCII	#GET REAL TEMP2 <cr></cr>	ASCII	
	READ	#GRT2 <cr></cr>		
	COMMAND	Result:		
		#GRT2: <realtemp2dbl><cr></cr></realtemp2dbl>		
	TX	#GET REAL TEMP2 <cr></cr>		
	RX	#255,GRT2:-999.000000 <cr></cr>		
		Real sensor temperature CH2:-999		

Returns the last measured temperature values on sensor input 2 as a floating point number. The measured value can be an erroneous or invalid measurement result or a valid measurement result.

REALTEMP2Dbl

The last temperature measurement result from sensor 2 as floating point number with a . for the decimal point.

The temperature value is returned in the actual configured unit in register CH2 UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET REAL TEMPS	ASCII	#GET REAL TEMPS <cr></cr>	ASCII	
	READ	#GRTS <cr></cr>		
	COMMAND	Result:		
		#GRTS: <realtemp1dbl>,<realtemp2dbl><cr></cr></realtemp2dbl></realtemp1dbl>		
	TX	#GET REAL TEMPS <cr></cr>		
	RX	#255,GRTS:-999.000000,-999.000000 <cr></cr>		
		Real sensor temperature CH1:-999,CH2:-999		

Returns the last measured temperature values on both sensor inputs as floating point numbers. The measured values can be erroneous or invalid measurement results or valid measurement results.

REALTEMP1Dbl

The last temperature measurement result from sensor 1 as floating point number with a . for the decimal point.

RFALTEMP2Dh

The last temperature measurement result from sensor 2 as floating point number with a . for the decimal point.

The temperature value is returned in the actual configured unit in register CHx_UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET AVG TEMP1	ASCII	#GET AVG TEMP1 <cr></cr>	ASCII	
	READ	#GAT1 <cr></cr>		
	COMMAND	Result:		
		#GAT1: <avgtemp1dbl><cr></cr></avgtemp1dbl>		
	TX	#GET AVG TEMP1 <cr></cr>		
	RX	#255,GAT1:-999.000000 <cr></cr>		
		Average sensor temperature CH1:-999		

Returns the last calculated average temperature for sensor input 1 as a floating point number.

AVGTEMP1Dbl

The last calculated average temperature result for sensor 1 as floating point number with a . for the decimal point.

The temperature value is returned in the actual configured unit in register CH1_UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET AVG TEMP2	ASCII	#GET AVG TEMP2 <cr></cr>	ASCII	
	READ	#GAT2 <cr></cr>		
	COMMAND	Result:		
		#GAT2: <avgtemp2dbl><cr></cr></avgtemp2dbl>		
	TX	#GET AVG TEMP2 <cr></cr>		
	RX	#255,GAT2:-999.000000 <cr></cr>		
		Average sensor temperature CH2:-999		

Returns the last calculated average temperature for sensor input 2 as a floating point number.

AVGTEMP2Dbl

The last calculated average temperature result for sensor 2 as floating point number with a . for the decimal point.

The temperature value is returned in the actual configured unit in register CH2_UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET AVG TEMPS	ASCII	#GET AVG TEMPS <cr></cr>	ASCII	
	READ	#GATS <cr></cr>		
	COMMAND	Result:		
		GATS: <avgtemp1dbl>,<avgtemp2dbl><cr></cr></avgtemp2dbl></avgtemp1dbl>		
	TX	#GET AVG TEMPS <cr></cr>		
	RX	#255,GATS:-999.000000,-999.000000 <cr></cr>		
		Average sensor temperature CH1:-999,CH2:-999		

Returns the last calculated average temperatures for both sensor inputs as floating point numbers.

AVGTEMP1Dbl

The last calculated average temperature result for sensor 1 as floating point number with a . for the decimal point.

AVGTEMP2Dbl

The last calculated average temperature result for sensor 2 as floating point number with a . for the decimal point.

The temperature value is returned in the actual configured unit in register CHx UNIT (°Celsius, °Fahrenheit or °Kelvin).

SET AVG INTERVAL1	ASCII	#SET AVG INTERVAL1: <avginterval1><cr></cr></avginterval1>	ASCII	NO
	WRITE	#SAI1: <avginterval1><cr></cr></avginterval1>		
	COMMAND	Result:		
		#OK <cr></cr>		
	AVGINTERVAL1	11		
	TX	#SET AVG INTERVAL1:11 <cr></cr>		
	RX	N/A		

Defines a new time interval for the average calculation in Seconds for channel 1.

AVGINTERVAL1

The new time span for the average calculation on sensor input 1 in Seconds.

This value is stored in the internal FLASH memory.

	/			
SET AVG INTERVAL2	ASCII WRITE COMMAND	#SET AVG INTERVAL2: <avginterval2><cr> #SAI2:<avginterval2><cr></cr></avginterval2></cr></avginterval2>	ASCII	NO
	AVGINTERVAL2	12		
	TX	#SET AVG INTERVAL2:12 <cr></cr>		
	RX	N/A		

Defines a new time interval for the average calculation in Seconds for channel 2.

AVGINTERVAL2

The new time span for the average calculation on sensor input 2 in Seconds.

This value is stored in the internal FLASH memory.

SET AVG INTERVALS		#SET AVG INTERVALS: <avginterval1>,<avginterval2><cr> #SAIS:<avginterval1>,<avginterval2><cr></cr></avginterval2></avginterval1></cr></avginterval2></avginterval1>	ASCII	NO
	AVGINTERVAL1	13		
	AVGINTERVAL2	14		
	TX	#SET AVG INTERVALS:13,14 <cr></cr>		
	RX	N/A		

Defines a new time interval for the average calculation in Seconds for both channels.

AVGINTERVAL1

The new time span for the average calculation on sensor input 1 in Seconds.

AVGINTERVAL2

The new time span for the average calculation on sensor input 2 in Seconds.

All values are stored in the internal FLASH memory.

GET AVG INTERVAL1	ASCII	#GET AVG INTERVAL1 <cr></cr>	ASCII	
	READ	#GAI1 <cr></cr>		
	COMMAND	Result:		
		#GAI1: <avginterval1dec>,<avginterval1hex><cr></cr></avginterval1hex></avginterval1dec>		
	TX	#GET AVG INTERVAL1 <cr></cr>		
	RX	#255,GAI1:10,0xA <cr></cr>		
		Average interval CH1:10		

Returns the current configured time span for the average calculation in Seconds as decimal or hexadecimal value for sensor channel 1.

AVGINTERVAL1Dec

AVGINTERVAL1Hex

The configured time span for the average calculation for sensor input 1 in Seconds

•	•			
GET AVG INTERVAL2	ASCII	#GET AVG INTERVAL2 <cr></cr>	ASCII	
	READ	#GAI2 <cr></cr>		
	COMMAND	Result:		
		#GAI2: <avginterval2dec>,<avginterval2hex><cr></cr></avginterval2hex></avginterval2dec>		
	TX	#GET AVG INTERVAL2 <cr></cr>		
	RX	#255,GAI2:10,0xA <cr></cr>		
		Average interval CH2:10		

Returns the current configured time span for the average calculation in Seconds as decimal or hexadecimal value for sensor channel 2.

AVGINTERVAL2Dec AVGINTERVAL2Hex

The configured time span for the average calculation for sensor input 2 in Seconds

GET AVG INTERVALS	ASCII	#GET AVG INTERVALS <cr></cr>	ASCII	
	READ	#GAIS <cr></cr>		
	COMMAND	Result:		
		#GAIS: <avginterval1dec>,<avginterval2dec>,</avginterval2dec></avginterval1dec>		
		<avginterval1hex>,<avginterval2hex><cr></cr></avginterval2hex></avginterval1hex>		
	TX	#GET AVG INTERVALS <cr></cr>		
	RX	#255,GAIS:10,10,0xA,0xA <cr></cr>		
		Average interval CH1:10,CH2:10		

Returns the current configured time span for the average calculation in Seconds as decimal or hexadecimal value for both sensor channels.

AVGINTERVAL1Dec

AVGINTERVAL1Hex

The configured time span for the average calculation for sensor input 1 in Seconds

AVGINTERVAL2Dec

AVGINTERVAL2Hex

The configured time span for the average calculation for sensor input 2 in Seconds

SET OFFSET TEMP1	ASCII WRITE	#SET OFFSET TEMP1: <ofstemp1><cr> #SOT1:<ofstemp1><cr></cr></ofstemp1></cr></ofstemp1>	ASCII	NO
	COMMAND	Result:		
		#OK		
	OFSTEMP1	1,234		
	TX	#SET OFFSET TEMP1:1.234 <cr></cr>		
	RX	N/A		

Defines a new zero offset value for sensor input 1 as a temperature value in the current configured temperature unit.

the new zero offset as a floating point number for sensor channel 1 with a . as a comma sign.

This value is stored in the internal FLASH memory.

······································				
SET OFFSET TEMP2	ASCII	#SET OFFSET TEMP2: <ofstemp2><cr></cr></ofstemp2>	ASCII	NO
	WRITE	#SOT2: <ofstemp2><cr></cr></ofstemp2>		
	COMMAND	Result:		
		#OK <cr></cr>		
	OFSTEMP2	1,234		
	TX	#SET OFFSET TEMP2:1.234 <cr></cr>		
	RX	N/A		

Defines a new zero offset value for sensor input 2 as a temperature value in the current configured temperature unit.

OFSTEMP2

the new zero offset as a floating point number for sensor channel 2 with a . as a comma sign.

This value is stored in the internal FLASH memory.

·					
SET OFFSET TEMPS	ASCII	#SET OFFSET TEMPS: <ofstemp1>,<ofstemp2><cr></cr></ofstemp2></ofstemp1>	ASCII	NO	
	WRITE	#SOTS: <ofstemp1>,<ofstemp2><cr></cr></ofstemp2></ofstemp1>			
	COMMAND	Result:			
		#OK <cr></cr>			
	OFSTEMP1	1,234			
	OFSTEMP2	2,3456			
	TX	#SET OFFSET TEMPS:1.234,2.3456 <cr></cr>			
	RX	N/A			

Defines a new zero offset value for both sensor inputs as a temperature value in the current configured temperature unit.OFSTEMP1the new zero offset as a floating point number for sensor channel 1 with a . as a comma sign.

GET OFFSET TEMP1	ASCII	#GET OFFSET TEMP1 <cr></cr>	ASCII	
	READ	#GOT1 <cr></cr>		
	COMMAND	Result:		
		#GOT1: <ofstemp1dbl><cr></cr></ofstemp1dbl>		
	TX	#GET OFFSET TEMP1 <cr></cr>		
	RX	#255,GOT1:0.000000 <cr></cr>		
		Current offset for CH1:0		

Returns the current configured zero offset values for sensor channel 1 as a floating point number.

OFSTEMP1Dbl

The configured zero offset value for sensor input 1 as floating point number with a . as a comma sign.

The offset value is returned in the actual configured unit in register CH1 UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET OFFSET TEMP2	ASCII	#GET OFFSET TEMP2 <cr></cr>	ASCII	
	READ	#GOT2 <cr></cr>		
	COMMAND	Result:		
		#GOT2: <ofstemp2dbl><cr></cr></ofstemp2dbl>		
	TX	#GET OFFSET TEMP2 <cr></cr>		
	RX	#255,GOT2:0.000000 <cr></cr>		
		Current offset for CH2:0		

Returns the current configured zero offset values for sensor channel 2 as a floating point number.

OFSTEMP2Dbl

The configured zero offset value for sensor input 2 as floating point number with a . as a comma sign.

The offset value is returned in the actual configured unit in register CH2 UNIT (°Celsius, °Fahrenheit or °Kelvin).

GET OFFSET TEMPS	ASCII	#GET OFFSET TEMPS <cr></cr>	ASCII	
	READ	#GOTS <cr></cr>		
	COMMAND	Result:		
		#GOTS:, <ofstemp1dbl><ofstemp2dbl><cr></cr></ofstemp2dbl></ofstemp1dbl>		
	TX	#GET OFFSET TEMPS <cr></cr>		
	RX	#255,GOTS:0.000000,0.000000 <cr></cr>		
		Current offsets CH1:0,CH2:0		

Returns the current configured zero offset values for both sensor channels as a floating point number.OFSTEMP1DblThe configured zero offset value for sensor input 1 as floating point number with a . as a comma sign.OFSTEMP2DblThe configured zero offset value for sensor input 2 as floating point number with a . as a comma sign. The offset values are returned in the actual configured unit in register CHx_UNIT (°Celsius, °Fahrenheit or °Kelvin).

SET SENSOR CONFIG1	WRITE COMMAND	#SET SENSOR CONFIG1: <stype>,<scurrent>,<slinearisation>,<sunit><cr> #SSC1:<stype>,<scurrent>,<slinearisation>,<sunit><cr> Result: #OK<cr></cr></cr></sunit></slinearisation></scurrent></stype></cr></sunit></slinearisation></scurrent></stype>	ASCII	NO
	STYPE	NI1000-DIN43760:Nickel Sensor 1000Ω according to DIN43760		
	SCURRENT	5MYA:Measurement current 5µA		
	SLINEARISATION	ITS90		
	SUNIT	KELVIN		
	TX	#SET SENSOR CONFIG1:NI1000-DIN43760,5MYA,ITS90,KELVIN <cr></cr>		
	RX	N/A		

RESI Configurator SLIMIOs RESI-xxx-SIO,ETH-V90 ASCII RESI-2RTD-SIO, ETH Commands Defines a new configuration for sensor input 1. The changes are valid after a REBOOT of the module. The configuration data will be written to the internal FLASH memory. SType The current type of the sensor: $PT100 \text{ Platin } 100\Omega$ PT1000 Platin 1000Ω PT1000 375 Platin 1000Ω α=0.00375 PT10 Platin 10Ω PT50 Platin 50Ω PT200 Platin 200Ω PT500 Platin 500Ω NI120 Nickel 120Ω NI1000-DIN43760 Nickel 1000Ω DIN43760 linearization R pure resistor measurement **SCurrent** The actual measurement current for the sensor 500MYA 500μA 1MA 1mA 5MYA 5μA 10MYA 10μA 20MYA 20uA 50MYA 50µA 100MYA 100µA 250MYA 250µA SLinearisation The actual linearization method for the sensor **EUROPE AMERICA** JAPAN ITS90 DONT CARE **SUnit** The actual temperature unit for the sensor CELSIUS **FAHRENHEIT** KELVIN ASCII #SET SENSOR CONFIG2:<STYPE>,<SCURRENT>,<SLINEARISATION>,<SUNIT><CR> **ASCII** SET SENSOR CONFIG2 NO WRITE #SSC2:<STYPE>,<SCURRENT>,<SLINEARISATION>,<SUNIT><CR> COMMAND Result: #OK<CR> PT1000:Platin Sensor 1000Ω STYPE 50MYA:Measurement current 50µA SCURRENT SLINEARISATION AMERICA SUNIT **FAHRENHEIT** SET SENSOR CONFIG2:PT1000,50MYA,AMERICA,FAHRENHEIT<CR> TX

Defines a new configuration for sensor input 2. The changes are valid after a REBOOT of the module. The configuration data will be written to the internal FLASH memory.

N/A

RX

SType
The current type of the sensor:
PT100 Platin 100Ω PT1000 Platin 1000Ω PT1000_375 Platin 1000Ω α=0.00375 PT10 Platin 10Ω PT50 Platin 50Ω PT200 Platin 200Ω PT500 Platin 500Ω NI120 Nickel 120Ω NI1000-DIN43760 Nickel 1000Ω DIN43760 linearization R pure resistor measurement

SCurrent

The actual measurement current for the sensor

500MYA 500μA

1MA 1mA 5MYA 5μA 10MYA 10μA 20MYA 20μA

50MYA 50μA 100MYA 100μA

250MYA 250µA

SLinearisation

The actual linearization method for the sensor

EUROPE AMERICA JAPAN

ITS90

DONT_CARE

SUnit

The actual temperature unit for the sensor

CELSIUS FAHRENHEIT KELVIN

CET CENCOD CONFICE	A C C II	WORT CENICOD CONFICCION (CATVIDE) (CACUIDDENT) (CALINIFADICATION) (CALINITY	A C C II	NO
SET SENSOR CONFIGS	ASCII	#SET SENSOR CONFIGS:S1, <s1type>,<s1current>,<s1linearisation>,<s1unit>,</s1unit></s1linearisation></s1current></s1type>	ASCII	NO
	WRITE	S2, <s2type>,<s2current>,<s2linearisation>,<s2unit><cr></cr></s2unit></s2linearisation></s2current></s2type>		(
	COMMAND	#SSCS:S1, <s1type>,<s1current>,<s1linearisation>,<s1unit>,</s1unit></s1linearisation></s1current></s1type>		(
		S2, <s2type>,<s2current>,<s2linearisation>,<s2unit><cr></cr></s2unit></s2linearisation></s2current></s2type>		(
		Result:		()
		#OK <cr></cr>		
	S1TYPE	PT1000:Platin Sensor 1000 Ω		
	S1CURRENT	50MYA:Measurement current 50μA		
	S1LINEARISATI	ION AMERICA		
	S1UNIT	FAHRENHEIT		
	S2TYPE	PT500:Platin Sensor 500Ω		
	S2CURRENT	50MYA:Measurement current 50μA		
	S2LINEARISATI	ION AMERICA		1
	S2UNIT	FAHRENHEIT		
	TX	#SET SENSOR		
		CONFIGS:S1,PT1000,50MYA,AMERICA,FAHRENHEIT,S2,PT500,50MYA,AMERICA,FAHRENHEIT <c< td=""><td></td><td>1</td></c<>		1
		R>		
	RX	N/A		1

Defines a new configuration for both sensor inputs. The changes are valid after a REBOOT of the module. The configuration data will be written to the internal FLASH memory. S1Type S2Type The current type of the sensor: PT100 Platin 100Ω PT1000 Platin 1000Ω PT1000 375 Platin 1000Ω α =0.00375 PT10 Platin 10Ω PT50 Platin 50Ω PT200 Platin 200Ω PT500 Platin 500Ω NI120 Nickel 120Ω NI1000-DIN43760 Nickel 1000Ω DIN43760 linearization R pure resistor measurement S1Current S2Current The actual measurement current for the sensor 500MYA 500μA 1MA 1mA 5MYA 5μA 10MYA 10μA 20MYA 20µA 50MYA 50µA 100ΜΥΑ 100μΑ 250MYA 250µA S1Linearisation S2Linearisation The actual linearization method for the sensor **EUROPE AMERICA** JAPAN ITS90 DONT CARE S1Unit S2Unit The actual temperature unit for the sensor **CELSIUS** FAHRENHEIT KELVIN **GET SENSOR CONFIG1** ASCII #GET SENSOR CONFIG1<CR> **ASCII** READ #GSC1<CR> COMMAND Result: #GSC1:<SType>,<SCurrent>,<SLinearisation>,<SUnit><CR> #GET SENSOR CONFIG1<CR> TX RX #255,GSC1:PT100,500MYA,EUROPE,CELSIUS<CR> CH1:Sensor type:PT100 CH1:Measurement current:500MYA CH1:Linearisation:EUROPE CH1:Temperature unit:CELSIUS Shows the current configuration of sensor input 1:

SType The current type of the sensor: $PT100 \ Platin \ 100\Omega$ PT1000 Platin 1000Ω PT1000_375 Platin 1000Ω α=0.00375 PT10 Platin 10Ω PT50 Platin 50Ω PT200 Platin 200Ω PT500 Platin 500Ω NI120 Nickel 120Ω NI1000-DIN43760 Nickel 1000Ω DIN43760 linearization R pure resistor measurement

SCurrent

The actual measurement current for the sensor

500MYA 500μA

1MA 1mA 5MYA 5μA 10MYA 10μA 20MYA 20μA

50MYA 50μA 100MYA 100μA

250MYA 250µA

SLinearisation

The actual linearization method for the sensor

EUROPE AMERICA JAPAN

ITS90

DONT_CARE

SUnit

The actual temperature unit for the sensor

CELSIUS FAHRENHEIT

KELVIN

GET SENSOR CONFIG2	ASCII	#GET SENSOR CONFIG2 <cr></cr>	ASCII	
	READ	#GSC2 <cr></cr>		
	COMMAND	Result:		
		#GSC2: <stype>,<scurrent>,<slinearisation>,<sunit><cr></cr></sunit></slinearisation></scurrent></stype>		
	TX	#GET SENSOR CONFIG2 <cr></cr>		
	RX	#255,GSC2:PT100,500MYA,EUROPE,CELSIUS <cr></cr>		
		CH2:Sensor type:PT100		
		CH2:Measurement current:500MYA		
		CH2:Linearisation:EUROPE		
		CH2:Temperature unit:CELSIUS		
Shows the current configuration of sen	sor input 2:		'	

SType The current type of the sensor: $PT100 \ Platin \ 100\Omega$ PT1000 Platin 1000Ω PT1000_375 Platin 1000Ω α=0.00375 PT10 Platin 10Ω PT50 Platin 50Ω PT200 Platin 200Ω PT500 Platin 500Ω NI120 Nickel 120Ω NI1000-DIN43760 Nickel 1000Ω DIN43760 linearization R pure resistor measurement

SCurrent

The actual measurement current for the sensor

500MYA 500μA

1MA 1mA 5MYA 5μA

10MYA 10μA 20MYA 20μA

50MYA 50μA

100ΜΥΑ 100μΑ

250MYA 250µA

SLinearisation

The actual linearization method for the sensor

EUROPE AMERICA

JAPAN

ITS90

DONT CARE

SUnit

The actual temperature unit for the sensor

CELSIUS FAHRENHEIT KELVIN

GET SENSOR CONFIGS	ASCII	#GET SENSOR CONFIGS <cr></cr>	ASCII	
	READ	#GSCS <cr></cr>		
	COMMAND	Result:		
		#GSCS:S1, <s1type>,<s1current>,<s1linearisation>,<s1unit>,</s1unit></s1linearisation></s1current></s1type>		
		S2, <s2type>,<s2current>,<s2linearisation>,<s2unit><cr></cr></s2unit></s2linearisation></s2current></s2type>		
	TX	#GET SENSOR CONFIGS <cr></cr>		
	RX	#255,GSCS:S1,PT100,500MYA,EUROPE,CELSIUS,S2,PT100,500MYA,EUROPE,CELSIUS <cr></cr>		
		CH1:Sensor type:PT100		
		CH1:Measurement current:500MYA		
		CH1:Linearisation:EUROPE		
		CH1:Temperature unit:CELSIUS		
		CH2:Sensor type:PT100		
		CH2:Measurement current:500MYA		
		CH2:Linearisation:EUROPE		
		CH2:Temperature unit:CELSIUS		

S1Type S2Type The current type of the sensor: PT100 Platin 1000Ω PT1000 Platin 1000Ω PT1000 375 Platin 1000Ω α=0.00375 PT10 Platin 10Ω PT50 Platin 50Ω PT200 Platin 200Ω PT500 Platin 500Ω NI120 Nickel 120Ω NI1000-DIN43760 Nickel 1000Ω DIN43760 linearization R pure resistor measurement

S1Current S2Current The actual measurement current for the sensor

500MYA 500μA 1MA 1mA 5MYA 5µA

10MYA 10μA 20MYA 20μA

50MYA 50μA 100MYA 100μA

250MYA 250µA

S1Linearisation S2Linearisation

The actual linearization method for the sensor

EUROPE

AMERICA

JAPAN

ITS90

DONT_CARE

S1Unit S2Unit

The actual temperature unit for the sensor

CELSIUS FAHRENHEIT

IZELVINI

GET SENSOR STATUS	ASCII	#GET SENSOR STATUS <cr></cr>	ASCII
	READ	#GSS <cr></cr>	
	COMMAND	Result:	
		#GSS: <s1statusdec>,<s2statusdec>,<s1statushex>,<s2statushex><cr></cr></s2statushex></s1statushex></s2statusdec></s1statusdec>	
	TX	#GET SENSOR STATUS <cr></cr>	
	RX	#255,GSS:203,203,0xCB,0xCB <cr></cr>	
		CH1:Sensor status bits:0000.0000.1100.1011	
		CH1:BIT0:VALID:1	
		CH1:BIT1:ADC OUT OF RANGE:1	
		CH1:BIT2:SENSOR UNDER RANGE:0	
		CH1:BIT3:SENSOR OVER RANGE:1	
		CH1:BIT6:HART ADC OUT OF RANGE:1	
		CH1:BIT7:SENSOR HART FAULT:1	
		CH2:Sensor status bits:0000.0000.1100.1011	

CH2:BIT0:VALID:1	
CH2:BIT1:ADC OUT OF RANGE:1	
CH2:BIT2:SENSOR UNDER RANGE:0	
CH2:BIT3:SENSOR OVER RANGE:1	
CH2:BIT6:HART ADC OUT OF RANGE:1	
CH2:BIT7:SENSOR HART FAULT:1	

Returns the current status for both sensor inputs:

S1StatusDec S1StatusHex Status for the first sensor input

S2StatusDec S2StatusHex Status for the second sensor input

Explanation of status bits:

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED lanore this bit

Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.

=0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

Are always 0

GET SENSOR STATUS1	ASCII	#GET SENSOR STATUS1 <cr></cr>	ASCII	
	READ	#GSS1 <cr></cr>		
	COMMAND	Result:		
		#GSS1: <sstatusdec>,<sstatushex><cr></cr></sstatushex></sstatusdec>		
	TX	#GET SENSOR STATUS1 <cr></cr>		
	RX	#255,GSS1:203,0xCB <cr></cr>		
		CH1:Sensor status bits:0000.0000.1100.1011		
		CH1:BIT0:VALID:1		
		CH1:BIT1:ADC OUT OF RANGE:1		
		CH1:BIT2:SENSOR UNDER RANGE:0		

	CH1:BIT3:SENSOR OVER RANGE:1	
	CH1:BIT6:HART ADC OUT OF RANGE:1	
	CH1:BIT7:SENSOR HART FAULT:1	

Returns the status for the first sensor input 1.

SStatusDec

SStatusHex

Status of the first sensor channel 1

Explanation of status bits:

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type. For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type.

For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

Ignore this bit

Bit 6: HARD ADC OUT OF RANGE

- =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.
- =0: Everything is ok

Bit 7: SENSOR HARD FAULT

=1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.

=0: Everything is ok

Bits 8..15: ALWAYS ZERO

Are always 0

GET SENSOR STATUS2	ASCII	#GET SENSOR STATUS2 <cr></cr>	ASCII	
	READ	#GSS2 <cr></cr>		
	COMMAND	Result:		
		#GSS2: <sstatusdec>,<sstatushex><cr></cr></sstatushex></sstatusdec>		
	TX	#GET SENSOR STATUS2 <cr></cr>		
	RX	#255,GSS2:203,0xCB <cr></cr>		
		CH2:Sensor status bits:0000.0000.1100.1011		
		CH2:BIT0:VALID:1		
		CH2:BIT1:ADC OUT OF RANGE:1		
		CH2:BIT2:SENSOR UNDER RANGE:0		
		CH2:BIT3:SENSOR OVER RANGE:1		
		CH2:BIT6:HART ADC OUT OF RANGE:1		
		CH2:BIT7:SENSOR HART FAULT:1		

Returns the status for the second sensor input 2.

SStatusDec SStatusHex Status of the first sensor channel 2

Explanation of status bits:

Bit 0:VALID

- =1: If the measurement result is valid, this bit is set and all other bits in the status are 0!
- =0: if the system detects a conversion error or problem, this bit is 0 and the measurement result must be discarded!

Bit 1:ADC OUT OF RANGE

=1: If the product of $2k\Omega$ * excitation current >1V, this bit is 1 and the measurement result is invalid.

The absolute input voltage of the ACD beyond ±1.125 • VREF/2

=0: Everything is ok

Bit 2: SENSOR UNDER RANGE

=1: The current measured temperature is beyond the lower limit for the selected sensor type.

For PT: -200°C, for NI-120: -80°C

=0: Everything is ok

Bit 3: SENSOR OVER RANGE

=1: The current measured temperature is above the upper limit for the selected sensor type. For PT: +850°C, for NI-120: +260°C

=0: Everything is ok

Bit 4: NOT USED

Ignore this bit

Bit 5: NOT USED

lanore this bit

- Bit 6: HARD ADC OUT OF RANGE =1: Erroneous readout of the ADC value. A possibility is an extreme high noise level on the signal. The sensor value will be discarded. A second option is an open wiring for the sensor.
- =0: Everything is ok

Bit 7: SENSOR HARD FAULT

- =1: Sensor wiring is open or no sensor is cabled to the module. Sensor has a shortcut or the internal sense resistor has an error.
- =0: Everything is ok

Bits 8..15: ALWAYS ZERO

Are always 0