RESI-C4-xxx

RESI-T4-xxx
IoT Controller

based on
Raspberry Pi® Compute Module 4 and P14
Our series of intelligent loT controller

Raspberry Piis a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Text, illustrations and programs have been elaborated with the greatest care. However, RESI Informatik & Automation
GmbH, translators and authors cannot accept any legal responsibility or liability for any incorrect information and its
consequences that may remain. This publication is protected by copyright. All rights reserved. No part of this book may
be reproduced in any form by photocopying, microfilm or other methods or in a language suitable for machines, in
particular data processing systems, without the prior written consent of RESI. The rights of reproduction through
lectures, radio and television are also reserved. This documentation and the associated software are protected by
copyright by the company RESI and by DI HC SIGL, MSc.

© Copyright 2005-2024 by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller Tvon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Content
T OUE POMTONIO ... 5
1T RESI-T4-xxX COMPACE IOT CONTIONET ... 5
1.2 RESI-C4-xxx 10T Controller With iNtegrated 1OS...........co.iiiieeeeeeeee e 6
2 Declaration Of CONTOMMITYooii e 7
2 R e v
2.2 SATEEY INSTIUCTIONS. ... 7
3 Mounting fOr XT4, XT8 OF XT 12, ... 8
3.1 Mounting 0N @ DIN ENSO022 TQIL........c.oviiiiiieeeeeee e .8
3.2 MOUNTING ONTO @ WAl 10
4 General techniCal data..... ... 12
4.1 RESI-T4-xxx BasiC t@ChNICAl Aata.... ... 12
4.2 RESI-C4-xxx Basic teChNICAl Aata. ... 13
4.3 RESI-T4-XXX: BASIC TOIMMINGIS ... 14
4.4 RESI-CA-XXX: BASIC TEIMNINGIS. ...t 16
4.5 MODBUS and ASCH COMMANTS. ... A7
4.5.1 MODBUS mapping+ASCIl command list for T4+C4 IoT controller
4.5.2 MODBUS RTU MASTEI COMMIUNMICATION ...
4.5.3 HOWTO map Values t0 MODBUS TEGISTEIS. it
4.5.4 MODBUS query response cycle.........ccc..c.......
4.5.5 MODBUS/RTU telegram structure.......

4.6 MODBUS COMMANAS.....ooovooeoeeeeeeeeeeeeeeeeeeeeeeee,
4.6.1 MODBUS 16 bit holding register structure..........
4.6.2 MODBUS big vs. least significant byte order..........
4.6.3 MODBUS storing large data into 16 bit registers...
4.6.4 MODBUS datatyes iN OUI COPIrOCESSONc.vuueviuiiaieisiiiseese s
4.6.5 MODBUS datatype storage and COMMON PITFAIIS............iiiiii e
4.6.6 MODBUS data type table
4.6.7 MODBUS table.........ccccoo....

A7 ASCI PIOTOCON. ... 31
471 COMMUNICATION SEQUENCE ... 32
4.7.2 Example: Query VERSION.............

4.7.3 Example: Query module TYPE
4.7.4 Table Of @l ASCI COMMIBNGS. ...

5 Dimensions of our 10T CONTrOEI ..., 35
5T RESIETAXXX XTA NOUSING.35
5.2 RESI-CA-XXX XTA NOUSING ..ot 37
5.3 RESI=CA-XXX XT8 NOUSING ..ot .39
5.4 RESI=CA-XXX: XTT12 NOUSING .o A1

6 Common functionalities ASCIH+MODBUS ..o, 43
6.1 Detecting the controller type and fEATUMES.co.iviioeeeeeee s 43
6.2 USING the LEDS @Nd DIP SWITCN. ... 45

6.2.1 Reading the DIP sWItCh in ASCIHFMODBUS.........c.iieeiee et 45
6.2.2 Update the LEDS in ASCHFMODBUS.........oo s 46
6.2.3 USE @ MEAIHIME ClOCK ...ttt ettt 49
6.2.4 Retrieve the Unique Serial NUMBDEr+DOX NMBMIE...........oiiiee e 51
6.2.5 USE the FEIMOMAGNETIC RAM ... 51
B5.2.6 EXECULE TACTOMY TESOI.......ooooi e 53
6.2.7 Additional WATCHDOG FOF LINUX............oooooooooeiee oo oo 53
6.2.8 INIT VALUES & COMMUNICATION WATCHDOG OF OS.........oooioiieieeoeeeees e 54

7 RESI-TA-XXX 10T CONTIOIET ..., 55
7.1 Basic functionality Of T4 10T FaMIIY.....o.iii e .55
7.2 RESI-TA=Z DASIC MNOAUIE........ooooioioeee ettt .56

7.2.1 Technical specification
7.2.2 Additional terminals or functionalities....

7.2.3 Connection diagram.........cocooeiiiniiiinsieeseeseeie
7.2.3.1 Cabling of the power supply and the ETNEINMET.o 58
7.3 RESI-TA-XxX=CAN/CAN FD 10T CONTIOIET ... e .59

7.3.1 Technical specification
7.3.2 Additional terminals or functionalities

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 2von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.3.3 CONNECHION GIAGIAIM.....oeriiiii e 60
7.3.3.1 Additional cabling of the CAN/CAN FD INTEITACE ... 60

7.4 RESI-T4-A,B,C,D with serial interfaces RS232 or RS485.. e .61
747 TECNNICAI SPECITICATION.t 62
7.4.2 Additional terminals OF FUNCHONGIIES. ... 62
7.4.3 CONNECHON GIAGIAM ...ttt 63

7. 43T RESI-TA-A @ddItIONAl CADIING ... 63

7.4.3.2 RESI-T4-B additional cabling...
7.4.3.3 RESI-T4-C additional cabling... .
7.4.3.4 RESI-T4A-D @dditioNal CaIDIING ... v 64

7.5 RESI-T4-KA KB,KC with KNX interface+RS232 or RS485..

75,1 TECNNICAI SPECIHICATION. ...t 66
7.5.2 Additional terminals OF FUNCHIONAITIES. ..o 66
7.5.3 Connection diagram..........ccccoocvreenreenne.
7.5.3.1 RESI-T4-KA additional cabling.
7.5.3.2 RESI-T4-KB additional cabling.....
7.5.3.3 RESI-T4-KC additional cabling

8 RESI=C XXX NOT CONIIOIE .ottt
8.1 Basic fFunctionality Of C4 famUIY........ooiiee e .70
8.2 RESI-C4-A,-2E,-LTE With SErial INTEITACE RSA8B5.....e oottt Ve

8.2.1 Technical specification...........c..ccoooooioriioieee
8.2.2 Additional terminals or functionalities....
8.2.3 Connection diagram...........cccccoovveevnreennn.
8.2.3.1 RESI-C4-A additional cabling.......
8.2.3.2 RESI-C4-A-2E additional cabling
8.2.3.3 RESI-C4-A-LTE additioNal CADIING... ... e

8.3 Which 10 types do our RESI-C4 series offer
8.3.1 Digital inputs DC 12-48V=...
8.3.1.1 Technical specification...........c...c........
8.3.1.2 Additional terminals or functionalities .
8.3.1.3 Cabling Of the AIGIAl INPULS........ oo
8.3.1.4 Using the digital inputs With ASCHHMODBUS............ e
8.3.1.4.1 Digital input filter........cccoovoniiiniiincicnens
8.3.1.4.2 Current status of digital inputs...........
8.3.1.4.3 Change & event counter for inputs......
8.3.1.4.4 ASCII EVeNtS....oovvicerererecs
8.3.2 Digital outputs DC £30V=.......

8.3.2.1 TECNINICAI SPECIHICATION. ...
8.3.2.2 Additional terminals OF fUNCHONAITIES............cvuuuiiii s
8.3.2.3 Cabling of the digital OUtPULS.......c...coovrrvverierrrriae.
8.3.2.4 Using the digital outputs with ASCII+MODBUS...
8.3.2.4.1 Update all digital INPULS & OULPULS ...t
8.3.2.4.2 Current Status Of IGItal OULDULS. ..o
8.3.2.4.3 Pulsing the digital outputs
8.3.2.4.4 Diagnostic information fOr digital QULPULS...........oiiii e
8.3.2.4.4.1 General diagnostiC Status Of @VETY i ...
8.3.2.4.4.2 SPI communication status of every chip...
8.3.2.4.4.3 Diagnostic status of every digital output.......................
8.3.2.4.4.4 Configuration of diagnostic status for init & WatChAOg...........coiuiiiiii e 105
8.3.3 Relay outputs S30V=, K250V ~, SBA, AGSNOo 108
8.3.3.1 TECNINICAI SPECIHICATION. ... 109
8.3.3.2 Additional terminals O fUNCHONAITIES. ..ot e 110
8.3.3.3 CabliNg OF the T@IAY OUEDUES ... 111
8.3.3.4 Using the relay outputs With ASCHHMODBUS. ..o 112
8.3.3.4.1 Update all digital INPULS & MIAY OULDULS.vuieeieii s 112
8.3.3.4.2 CUITeNt SLAtUS Of TEIAY OULPULS ...t 112
8.3.3.4.3 PUISING The TIAY OULPULS.......e oo 114
8.3.4 Universal analog inputs & outputs 0-10V, 0-20MA, RTD ..ot 116
8341 TECNICAI SPECITICALION. ... 17
8.3.4.2 Additional terMiNAlS OF FUNCHONAITHIES.vviuii i 119
8.3.4.3 Cabling of the universal analog inputs or OUtPULS...........coovvvrrrvveerrienane. 120
8.3.4.4 Using the universal analog inputs & outputs With ASCIHMODBUS ... 123
8.3.4.4.1 COMMUNICATION WITH CO=PIOCESSON ...t 123
8.3.4.4.2 HOWLO Set the 1O tyPe OF The AIOXt es s 123
8.3.4.4.3 Howto read analog iNPULS =10V OF 2-TOV ... 125
8.3.4.4.4 Howto set an analog oUtPUL O-T0V OF 2-T0V ... 127
8.3.4.4.5 Howto read analog inputs 0-20mA or 4-20mA.... ...130
8.3.4.4.6 Howto set analog outputs 0-20MA OF 4=20MA ... 131
8.3.4.4.7 HOWLO 1€ad @ AIGITal INDUL. ..o 135
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 3von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.8 Howto read a resistor value
8.3.4.4.9 Howto read a PT100,PT1000,NI1000-DIN43760 sensor....
8.3.4.4.10 Howto set output values for INIT & 10 WATCHDOG......

8.3.4.4.11 Howto detect status & diagnostic of AIOX hardware...................
8.3.4.4.12 Howto check temperature & supply voltages of AIOX hardware

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

4von153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

1 Our portfolio

Based on the Raspberry Pi® Pl4 and Compute Module 4 LINUX board, we offer a broad spectrum of loT Controller.

1.1 RESI-T4-xxx Compact loT Controller

Our RESI-T4 series is based on the standard Raspberry Pi® PI4 board. We packed the board into an industrial
housing for the DIN rail and we extended the controller with various features:

m Industrial grade power supply 12-48Vdc

Dimension XT4: 72x110x62mm (WxHxD)

SD-CARD Slot with 32GB SD CARD for LINUX and your software

Versions with integrated serial interfaces: RS232 or RS485

Versions with integrated KNX interface

Versions with integrated CAN 2.0 or CAN FD interface

ARM Co-Processor with real time clock with backup capacitor, ferromagnetic RAM for permanent data storage,
unigue serial number, Status LEDs and 8 pin DIP switch

The modules are designed for mounting on a DIN EN50022 rail. But the modules offer also a wall mounting option.

Figure: Our series of RESI-T4-xxx loT Controller

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 5von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

1.2 RESI-C4-xxx loT Controller with integrated 1Os

Our RESI-C4 series is based on the Raspberry Pi® Compute Module 4 board. We build around the CPU module an
industrial grade controller with integrated |0s. The main features of this series are:

m Industrial grade power supply 12-48Vdc

Dimension XT4: 72x110x62mm (WxHxD) or XT8 143x110x62mm or XT12 213x110x62mm

SD-CARD Slot with 32GB SD CARD for LINUX and your software

One serial interface RS485

Versions with integrated LTE modem

Versions with second Ethernet

ARM Co-Processor for management of the integrated |Os.

Up to 152 integrated 1Os.

ARM Co-Processor with real time clock with backup capacitor, ferromagnetic RAM for permanent data storage,
unique serial number, Status LEDs and 8 pin DIP switch

The modules are designed for mounting on a DIN EN50022 rail. But the modules offer also a wall mounting option.

&
- &

K.

Figure: Our series of RESI-C4-xxx loT Controller

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 6von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

2 Declaration of conformity
2.1 CE

All products have passed the CE tests for environmental specifications when shielded cables are used for external
wiring. We recommend the use of shielded cables.

2.2 Safety instructions

Danger to life through electrical current!

Only skilled personal trained in electro-engineering should perform the described steps in the following chapters. Please observe the country specific
rules and standards. Do not perform any electrical work while the device is connected to power.
Pay attention to the following rules:

1. Disconnect the system from power

2. Secure the system against automatic power on

3. Check that the system is de-energized

4. Cover other energized parts of the system

IMPORTANT HINT: Before you start with the installation and the initial setup of the device, you have to read this document and the attached
installation guide and the actual manual for the device very carefully. You have to follow all the herein given information very accurate!

Q Only authorized and qualified personnel are allowed to install and setup the device!

Q The connection of the device must be done in de-energized state!

Q Do not perform any electrical work while the device is connected to power!

Q Disable and secure the system against any automatic restart or power on procedure!

Q The device must be operated with the defined voltage level!

Q Supply voltage jitters must not exceed the technical specifications and tolerances given in the technical manuals for the product. If you do not
obey this issue, the proper performance of the device cannot be guaranteed. This can lead to fail functions of the device and in worst case to a
complete breakdown of the device!

Q You have to obey the current EMC regulations for wiring!

Q Allsignal, control and supply voltage cables must be wired in a way, that no inductive or capacitive interference or any other severe electrical
noise disturbance may interfere with the device. Wrong wiring can lead to a malfunction of the device!

Q For signal or sensor cables you have to use shielded cables, to avoid damages through induction!

Q You have to obey and to apply the current safety regulations given by the OVE, VDE, the countries, their control authorities, the TUV or the local
energy supply company!

Q Obey country-specific laws and standards!

Q The device must be used for the intended purpose of the manufacturer!

Q No warranties or liabilities will be accepted for defects and damages resulting from improper or incorrect usage of the device!

O Subsequent damages, which results from faults of this device, are excluded from warranty and liability!

Q Only the technical data, wiring diagrams and operation instructions, which are part to the product shipment are valid!

Q The information on our homepage, in our data sheets, in our manuals, in our catalogs or published by our partners can deviate from the
product documentation and is not necessarily always actual, due to constant improvement of our products for technical progress!

Q In case of modification of our devices made by the user, all warranty and liability claims are lost!

Q The installation has to fulfil the technical conditions and specifications (e.g. operating temperatures, power supply, ...) given in the devices
documentation!

Q Operating our device close to equipment, which do not comply with EMC directives, can influence the functionality of our device, leading to
malfunction or in worst case to a breakdown of our device!

Q Our devices must not be used for monitoring applications, which solely serve the purpose of protecting persons against hazards or injury, or as
an emergency stop switch for systems or machinery, or for any other similar safety-relevant purposes!

Q Dimensions of the enclosures or enclosures accessories may show slight tolerances on the specifications provided in these instructions!

Q Modifications of this documentation is not allowed!

Q Incase of a complaint, only complete devices returned in original packing will be accepted!

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 7 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

3 Mounting for XT4, XT8 or XT12

Our loT controllers are designed for mounting onto a 35mm DIN-EN50022 rail or for wall mounting.
Please note, that in the following mounting description we use only symbolic photos of our loT controllers.

3.1 Mounting on a DIN EN50022 rail

First snap in the top part of the module into the DIN rail (1). The bottom part of the module is not snapped into the
DIN rail at this moment.

- = — =1
RES]
F——
==
= e
—

Then open the black hook with a screw driver (2). Now press the module with the opened hook onto the DIN rail
until both sides of the module snap into the DIN rail (3). Release the screw driver now. The hook snaps into the DIN
rail and the module is now mounted correctly onto the DIN rail.

RES]

|

To remove the module from the DIN rail, you must open the hook with a screwdriver first. (4). Afterwards tilt the
bottom side of the module upwards with the open hook (5). Now remove the module slightly from the DIN rail with
the top side, to completely hang out the module from the DIN rail.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 8von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

HESS

The module is correctly mounted, if the module has snapped into the DIN rail on both sides of the housing (6) and

if the hook has snapped in too (7).

ME s ™ W

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

9von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

3.2 Mounting onto a wall

Our modules can also be mounted onto a wall. Turn over the module as shown in the picture below:

You will notice, that there are two holes for wall hooks or screws on the top side of the housing. (1) and (2). On the
bottom side you will notice a small hole for a screw to fix the housing on the wall from the front (3). But first we
have to remove the hook, which blocks the screw hole in the housing.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 10von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

Press carefully the screwdriver onto the hook to open the lock (4) and pull back the hook to the inner side of the
housing bottom to remove the hook. If the hook is not snapped into the housing, you can remove the hook by
hand (5) and the screw hole for fixing the housing with a screen from the front side of the housing (6).

-~ |
/
F

o=

MZ
i

—

el

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 1Tvon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4 General technical data

In this section you will find all technical data which is common to all IO modules. In the specific sections of the
individual IO modules you will find only the differences and extensions to this standard description.

41 RESI-T4-xxx Basic technical data

Power supply

Supply voltage

12-48V = +/-10%

Power consumption

see individual technical data for specific IoT controller

Raspberry Pi 4® module

Module type

Raspberry Pl 4 with 2/4/8GB RAM

More details on the official Raspberry homepage

Operating system

LINUX

FLASH

in SD-CARD slot; 32GB

Serial interfaces

Up to three serial interfaces:

RS232 or RS485

Ethernet interface

Cable connection

via RJ 45 socket

USB interface

1XUSB 2.0, 2xUSB 3.0

HDM I interface

2xHDMI micro connectors 4K

AUDIO+VIDEOQ interface

IXAUDIO+VIDEO out connector

Real-Time-Clock

Yes, with external backup capacitor

General
Storage temperature -20..85 °C
Operating temperature 0..50 °C

Humidity

25..90% r.H. non-condensing

Protection class

IP20 (EN 60529)

Dimensions LxWxH

see section Dimension

Weight see individual technical data for specific IO module
Installation on DIN EN50022 rail and on wall
Approvals

CE conformity

Yes

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

12 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.2

Power supply

RESI-C4-xxx Basic technical data

Supply voltage

12-48 V = +/- 10%

Power consumption

see individual technical data for specific IoT controller

Raspberry Pi 4® module

Module type

Raspberry PI Compute Module 4 with 2/4/8GB RAM

More details on the official Raspberry homepage

Operating system

LINUX

FLASH

in SD-CARD slot; 32GB

Serial interfaces

1xRS485

Ethernet interface

xEthernet or 2xEthernet

Cable connection

via RJ 45 socket

USB interface

2xUSB 2.0

HDM I interface

IXxHDMI micro connector 4K

Real-Time-Clock

Yes, with external backup capacitor

General
Storage temperature -20..85 °C
Operating temperature 0..50 °C

Humidity

25..90% r.H. non-condensing

Protection class

IP20 (EN 60529)

Dimensions LxWxH

see section Dimension

Weight see individual technical data for specific IO module
Installation on DIN EN50022 rail and on wall
Approvals

CE conformity

Yes

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

13 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.3 RESI-T4-xxx; Basic terminals

The RESI-T4-xxx loT controller come in a housing with removable clamps. All T4 loT Controller offer the following
terminals:

L+, M- Power supply via two separated plug-in 2-pin terminal blocks.
For daisy chain IN and OUT power supply of many modules
Pin 1: L+:12-48 V=
Pin 2: M-: Ground
Terminal type: RM5
Depending on loT controller: Up to 3xRS485 or RS232 or up to 2xRS232 or RS485 and
IxKNX
RS485#7 RS485 serial interface
Pin T: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS485 ground signal
Terminal type: RM3.5
RS232#7 RS232 serial interface
Pin 1: TX: RS232 DATA+ signal
Pin 2: RX: RS232 DATA- signal
Pin 3: M-: RS232 ground signal
Terminal type: RM3.5
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 14 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

KNX KNX interface
Pin 1: K+: KNX+ signal (RED)
Pin 2: K-: KNX- signal (BLACK)
Terminal type: RM3.5

CAN/CAN FD CAN 2.0 or CAN FD interface
Pin 1: H: CAN HIGH signal
Pin 2: L: CAN LOW signal
Pin 3: G: CAN Ground signal

Terminal type:

RM3.5

Terminal type RM5

Cable cross section:

max. 2.5 mmz2, max. 14AWG

Screw:

M3

Tightening torque:

max. 0.5Nm, max. 4.43 Lb-in

Terminal type RM3.5

Cable cross section:

max. 1.5 mm?2, max. 16AWG

Screw:

M2

Tightening torque:

max. 0.2Nm, max. 1.77 Lb-in

RESI Informatik & Automation GmbH

RESI-T4/C4 loT Controller 15von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.4

RESI-C4-xxx: Basic terminals

The RESI-C4-xxx loT controller come in a housing with removable clamps. All C4 IoT Controller offer the following

terminals:
L+, M- Power supply via two separated plug-in 2-pin terminal blocks.
For daisy chain IN and OUT power supply of many modules
Pin 1: L+:12-48 V=
Pin 2: M-: Ground
Terminal type: RM5
SIO1 RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS$485 ground signal

Terminal type:

RM3.5

Terminal type RM5 Cable cross section:

max. 2.5 mm2, max. T4AWG

Screw:

M3

Tightening torque:

max. 0.5Nm, max. 4.43 Lb-in

Terminal type RM3.5 Cable cross section:

max. 1.5 mm2, max. 16AWG

Screw:

M2

Tightening torque:

max. 0.2Nm, max. 1.77 Lb-in

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

16 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

45 MODBUS and ASCIl commands

Our controllers offer the possibility to communicate with the internal ARM Co-processor either via ASCII commands
or with MODBUS RTU master protocol.

Our RESI-T4-xxx controller offer ASCIl and MODBUS RTU master communication via dev/ttyACMO
Our RESI-C4-xxx controller offer ASCIl communication via dev/ttyACMO and MODBUS RTU master communication
via dev/ttyACM1

451 MODBUS mapping+ASCIl command list for T4+C4 loT controller

Please refer to the external document for detailed documentation of the current MODBUS+ASCII commands for this
loT controller. You will find it on our website www.RESI.cc in the document section for the specific IoT controller.

IMPORTANT HINT:
The ASCII commands and answers may vary through the actual amount of 10s of your IoT controller model. So in
this document we show ASCIl commands only as a hint, how to use the commands.

The MODBUS register indices are not always the same for all IoT controllers. So be aware that in this documentation
we only give you a sample MODBUS register or coil out of any loT controller of our portfolio to show the basic
register mapping for a function.

So take this document only as a hint, how to read or write to the registers and coils. But the correct index is only
found in the current document for your loT Controller. This document with the list of all ASCII commands is found
on our web server. It has the name RESI-L-<ControllerName>-MODBUS+ASCII-EN.pdf

452 MODBUS RTU master communication

For communication with the ARM Co-processor, the LINUX software can use MODBUS/RTU master protocol.
The Co-processor offers the following MODBUS functions:

READ COILS (function code: 1)

READ CONTACTS (function code: 2)
WRITE SINGLE COIL (function code: 5)
WRITE MULTIPLE COILS (function code: 15)

READ HOLDING REGISTER (function code: 3)
READ INPUT REGISTER (function code: 4)
PRESET SINGLE REGISTER (function code: 6)
PRESET MULTIPLE REGISTERS (function code: 16)

IMPORTANT:

The internal Co-processor uses always UnitID 1 because it is the only MODBUS/RTU slave on this serial line!

The settings of the baud rate, parity, stop bits are irrelevant, due to the fact that the Co-processor is physically
connected via USB to the LINUX system.

HINT:

The functions READ HOLDING REGISTER, READ INPUT REGISTER and PRESET MULTIPLE REGISTERS are restricted to
max. 125 register per request.

The functions READ COILS, READ CONTACTS and WRITE MULTIPLE COILS are restricted to max. 1000 bits per

request.

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 17 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

http://www.RESI.cc/

453 HOWTO map values to MODBUS registers

MODBUS is an international standard for communication between host systems like PLCs, DDCs or Industrial PCs
and peripheral components or sensors.

More details about the MODBUS standard and the MODBUS protocol can be found here:
http://en.wikipedia.org/wiki/Modbus
http://www.modbus.org/

You can find a documentation about this in the internet called “PI_MBUS_300.pdf” , which describes the MODBUS
protocol pretty good.

There are three different MODBUS protocol versions available:
MODBUS/TCP: Used for communication with TCP/IP systems
MODBUS/RTU: A binary version of the MODBUS protocol
MODBUS/ASCII: An ASCII text based version of the protocol

To communicate with our ARM Co-processor you have to use MODBUS/RTU master protocol version.

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 18 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

454

MODBUS query response cycle

MODBUS is a master slave protocol. This means, the master (your host system) has to send a protocol to a specific
MODBUS slave (one of our converters), then this specific slave answers to the master, and then the master asks the
next slave. The address of the slave is the so-called device address or unit address, which we mentioned before. See

the below graphic, how a basic MODBUS request and response cycle looks like.

The Query—Response Cycle

Query message from Master ‘

Device Address

Device Address

Function Code

Function Code

Eight-Bit
— Data Bytes —

Eight-Bit
— Data Bytes —

Error Check

Error Check

Response message from Slave

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

19von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

455 MODBUS/RTU telegram structure

A MODBUS/RTU protocol frame consists out of the following fields:

START: There is no specific start character, so a pause of four character timings depending on the baud rate of your
communication must be established. This means at least for four characters, that there must be no
communication on the serial line!

ADDRESS: This is the unit address of the slave, the master wants to talk to. It' s a number between 0 and 255.

FUNCTION: This defines the type of data communication, the master wants to handle with the slave. Refer to the
next pages for a detailed description of the functions.

DATA: This is a block of individual data bytes.

CRC CHECK: This is the checksum, to let the master and slave check, if the received protocol is correct and without
communication errors.

END: Same as the start condition. Again there must not be communicated for at least 4 character times on the
serial line.

IMPORTANT HINT: If there is more than one MODBUS slave on a serial line, the pausing of the START and END
sequence are essential to re synchronize the slaves in case of data loss. If the host doesn’ t keep this gaps,
communication with the slaves can be corrupted or impossible!

START ADDRESS FUNCTION DATA CRC END
CHECK
T1-T2-T3-T4 8BITS 8 BITS nx8BITS 16 BITS T1-T2-T3-T4
RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 20von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6 MODBUS commands

The MODBUS standard defines many available commands . But not all systems handle the complete spectrum of
telegrams. Our converter handles only all telegrams necessary for using holding and INPUT regjisters.

We support

01 READ COIL STATUS

02 READ INPUT STATUS

03 READ HOLDING REGISTER
04 READ INPUT REGISTER

05 FORCE SINGLE COIL

06 PRESET SINGLE REGISTER
15 FORCE MULTIPLE COILS

16 PRESET MULTIPLE REGISTER

IMPORTANT HINT: All other protocols are ignored by our converters.

So what are COILS or INPUTS ?
According to the MODBUS standard, a MODBUS/RTU slave can hold up to 65535 coils and 65535 inputs. Each coil
or input is a 1 bit register, capable for binary values between 0 and 1.

A MODBUS/RTU master system can read and write the contents of those registers with the functions:
01 READ COIL STATUS

02 READ INPUT STATUS

05 FORCE SINGLE COIL

15 FORCE MULTIPLE COILS

Our Co-processor has only one table for coils and inputs. So it makes no difference if your read coils or inputs. You
will read the same state!

So what are HOLDING or INPUT REGISTERs ?

According to the MODBUS standard, a MODBUS/RTU slave can hold up to 65535 HOLDING registers and 65535
INPUT registers. Each holding or input register is a 16 bit register, capable for integer values between 0 and 65535
or in hexadecimal from 0x0000 to OxFFFF.

A MODBUS/RTU master system can read and write the contents of those registers:
03 READ HOLDING REGISTER

04 READ INPUT REGISTER

06 PRESET SINGLE REGISTER

16 PRESET MULTIPLE REGISTER

Our Co-processor has only one table for holding and input registers. So it makes no difference if your read holding
registers or input register. You will read the same state!

IMPORTANT HINT:

A MODBUS/RTU master can read and write into this registers with a 16 bit index, called the starting address. The
problem is the definition of the starting address. A 16 bit value can store the values from 0 to 65535. But according
the MODBUS standard the registers are numbered from 1to 65536. So, if the MODBUS standard talks about register
1, an index of 0 must be used as start address in the telegram. You have to check carefully, how this index is
interpreted by the manufacturer's documentation.

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 2Tvon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Code

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

Name

Read Coil Status

Read Input Status

Read Holding Registers
Read Input Registers
Force Single Coil

Preset Single Register
Read Exception Status
Diagnostics

Program 484

Poll 484

Fetch Comm. Event Cir.
Fetch Comm. Event Log
Program Controller

Poll Controller

Force Multiple Coils
Preset Multiple Registers
Report Slave 1D
Program 884/M84

Reset Comm. Link

Read General Reference

Write General Reference

Whenever you get a description of registers for a MODBUS device, the first question to solve is: How is the
enumeration of the registers done?! Does the author use base=0, then he talks about the real start index of the
telegram. Does the author mean base=1, conforming to naming conventions of the MODBUS consortium, then you
have to subtract 1 before using this address in your telegrams.

IMPORTANT HINT:
If we display a holding register address like 4x00009 in our tool, we assume base=1 conforming to the standard. So
your host system has to send the start index 00008 decimal to read out the correct register.

Start Index (Base=0) MODBUS Register (Base=1)

0

65534

65535

1

65535

65536

The first holding register

The second holding register

The third holding register

The penultimate
reqgister

holding

The last holding register

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

22von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

461 MODBUS 16 bit holding register structure

Here we give a brief introduction, how to build the contents of a MODBUS holding register, and how a hexadecimal
writing of a 16 bit register looks like. We assume, that the user is familiar to hexadecimal and binary number systems
and also how a computer stores data into its internal memory.

For more details consult the internet:
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Binary number

Usually a hexadecimal digit describes 4 bits. So we can group the 16 bits into 4 hexadecimal digits named
H3,H2,H1,HO. This means eg. the hexadecimal number OxABCD stands for H3=A, H2=B, H1=C, HO=D.

16 Bit HOLDING Register

MSB LSB
15114113112 |11|110]1 9| 8| 7]|6|5]14]3|]2]1]1]0

H3 H2 H1 HO

0xA=1010 binary, 10 dec, 0xB=1011,11 dec, 0xC=1100,12 dec and 0xD=1101, 13 dec. So the resulting binary number is
1010101111001101b or 43981 decimal.

See this graphical explanation, how the number is stored:
MSB LSB

1511411311211 110]1 9| 8| 7]|6|5]14]3]2]1]1]0
11011021011]1}J212]1]1]0]0J212]1]0]1

46.2 MODBUS big vs. least significant byte order

Now the first problem for a host system arises:
If we take the 16 bit number OXABCD, we have to use 2 bytes to store this value internally. There are two concurrent
versions of how to store this value in the RAM:

INTEL byte order, Little endian systems store the least significant byte first. So a memory map for OxABCD look like:

Memory address O CD
Memory address 1 AB

MOTOROLA byte order, Big endian systems store the most significant byte first. So a memory map for OxABCD look
like:

Memory address O AB
Memory address 1 CD

Consult the internet for more details about this storage system.

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 23von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

http://en.wikipedia.org/wiki/Endianness

46.3 MODBUS storing large data into 16 bit registers

After years, the market found out, that the capabilities of storing only 16 bit numbers into one holding register is not
enough for many applications. The most common solution to store more than 16 bit values into holding registers is
to use more than one register to hold the value. For storing e.g. a 32 bit value, we use two consecutive 16 bit
holding registers, for storing a 32 bit float value we also use also two consecutive 16 bit registers!

We want to store the 32 bit integer value 0x12345678 into two consecutive holding registers starting at 4x00020.
The memory map of the holding registers look like:

16 bit value
Start Index 19 Holding Register 4x00020 0Ox1234
Start Index 20 Holding Register 4x00021 0x5678

But again, we can also store the reverse word order into two consecutive registers. Then the result looks like this:
16 bit value
Start Index 19 Holding Register 4x00020 0x5678
Start Index 20 Holding Register 4x00021 0x1234

So none of the above mentioned orders is better than the other. It depends only on the programmer, how the 32
bit value is treated.

Be aware, that both systems (host and converter) have to treat the 32 bit value in the same way. Otherwise you will
read out wrong data! We will discuss this issue later in combination with 32 bit float numbers.

Our converter uses the second described way to store 32 bit values. We follow the little endian strategy of INTEL
systems and store 0x5678 into the first HOLDING register, and then we store 0x1234 in the consecutive register.

464 MODBUS datatypes in our Co-processor

Our Co-processor supports the following data types for storing values into MODBUS registers.
16 bit signed binary: This is an integer number between -32767..0..+32768 or 0x0000 to OxFFFF hex. This number
needs exactly one HOLDING register.

32 bit singed binary: This is an integer number between -2,147,483,647..0..+2,147,483,648 or 0x00000000 to
OXFFFFFFFF hex. This number needs two consecutive holding registers. We store the least significant word first.
The serial number 2544082 is in hex 0x26D1D2. This leads to the following HOLDING register layout:

16 bit value
Start Index 0 Holding Register 4x00001 OxD1D2 or 53714 dec
Start Index 1 Holding Register 4x00002 0x0026 or 38 dec

32 bit IEEE floating point: This is a float number using 32 bit. As before, this float needs two consecutive holding
registers. We store the least significant word first. The energy value of 6632480,00 is defined in 32 bit hex with
Ox4ACA6840. This leads to the following HOLDING register layout. For more details search in the internet or

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 24 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

consult http://en.wikipedia.org/wiki/IEEE floating point or try out some float values and their hexadecimal
representation under http://www.h-schmidt.net/FloatConverter/I[EEE754.html

16 bit value
Start Index 0 Holding Register 4x00001 0x6840
Start Index 1 Holding Register 4x00002 Ox4ACA
Sign Exponent Mantissa
alue: +1 022 1.5813064575195312
Encoded as; i 149 4676352
Binaryj v v v v v v v V¥ v v
Decimal Representation £632480.0
Binary Representation 01001010110010100110100001000000

Hexadecimal Representation Ixdacahid0

After casting to double precision BE32450.0

32 bit IEEE floating point inverse: This is a float number using 32 bit. Again this float needs two consecutive
holding registers. We store the least significant word first. The energy value of 6632480,00 is in 32 bit hex
Ox4ACA6840. This means the following HOLDING register layout. For more details search in the internet or
consult http://en.wikipedia.org/wiki/IEEE floating point or try out some float values and their hexadecimal
representation under http.//www.h-schmidt.net/FloatConverter/IEEE754.html

16 bit value
Start Index O Holding Register 4x00001 Ox4ACA
Start Index 1 Holding Register 4x00002 0x6840
Sign Exponent Mantissa
alle: +1 722 1.5613064575195312
Encoded as: i 143 4876352
Elinary: v v v v v v v V¥ v v
Decimal Representation 56324800
Binary Representation 0100101011 0010100110100001 000000

Hexadecimal Representation Ixdacahid0

After casting to double precision BE32450.0

IMPORTANT HINT:

32 bit floats are very tricky! Eg. The value 3,5351799 is represented internally as 0x40624063. But the reverse word
order (if the host reads out the wrong register indexes or the host corrupts the word order) 0x40634062 leads to
the float number 3,5508046. So this error in your software is very hard to find! Be very cautious, which register
indexes you read and how the word order of the two registers are interpreted.

32 bit date&time: This is a compressed format using 32 bit. Again the least significant word is stored into the first
register. The structure of the 32 bits are:
Bits 0..7: minute
Bits 8..15: hour
Bits 16..20: day
Bits 21..24: month
Bits 25..3T: year
The current date & time “07.04.00 01:13" is represented hexadecimal with 0x0087010d (8847628dec) and
stored as followed:

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 25vwon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

16 bit value
Start Index O Holding Register 4x00001 0Ox010D
Start Index 1 Holding Register 4x00002 0x0087
RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 26von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

46.5 MODBUS datatype storage and common pitfalls

In general MODBUS uses 16 bit wide registers. So if you use only datatypes, which needs also only one register, the
mapping is easy. But as soon as you use datatypes, e.g. UINT32, which need two or more MODBUS registers, you
can map the values in different ways.

We do a simple sample. We want to store the 32 bit unsigned integer value in hexadecimal 0x12345678 in MODBUS
holding registers starting with index 4x00010. The mapping can be done in two different ways:

MODBUS Storage of UINT32 datatype

Register

4x00010 The high word of the 32 bit value 0x12345678 is stored in the first 16 bit wide MODBUS register.
-9 This means the value 0x1234 is stored here.

4x00011 The low word of the 32 bit value 0x12345678 is stored in the second 16 bit wide MODBUS
1110 register. This means the value 0x5678 is stored here.

But it is only one possibility, that we store the high word in the first MODBUS register. With the same right, we can
define to store the low word in the first register, and the high word in the second.

The result will look like this:

MODBUS Storage of UINT32R datatype

Register

4x00010 The low word of the 32 bit value 0x12345678 is stored in the first 16 bit wide MODBUS register.
1:9 This means the value 0x5678 is stored here.

4x00011 The high word of the 32 bit value 0x12345678 is stored in the second 16 bit wide MODBUS
110 register. This means the value 0x1234 is stored here.

More complicated is the storage of a FLOAT32 value into two consecutive holding registers. We use a standard
room temperature e.g. 23,45 °C as a value, we want to store it into two registers.

First we have to translate this value into a valid IEE754 float value. Therefore we use a perfect site in the internet
(http://www.h-schmidt.net/FloatConverter/IEEE754.html):

Sign Exponent Mantissa
Walue: +1 od 14656250476837158
Encoded as: 0 131 3905946
Binary: [2 8 T Y T 8 72 R 7 5 72 72 2 72 72 72 2 2 2 2 72 8 7 8 8 7 N

Decimal Representation 23.45
Binary Representation 01000001101110111001100110011010
Hexadecimal Representation 0x41bh39%a

After casting to double precision |23.450000762939453

We enter the value 23.45 and we get a 32 bit hexadecimal representation of the float value. It is the number
0x41BB999A. Now we store this value in the same way, we have stored the UINT32 value into two registers:

MODBUS Storage of FLOAT32 datatype

Register

4x00010 The high word of the 32 bit float value 0x41BB999A is stored in the first 16 bit wide MODBUS
1:9 register. This means the value 0x41BB is stored here.

4x00011 The low word of the 32 bit float value 0x41BB999A is stored in the second 16 bit wide MODBUS
110 register. This means the value 0x999A is stored here.

RESI Informatik & Automation GmbH

27von153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI-T4/C4 |oT Controller

But we can also use the reverse notation:

MODBUS Storage of FLOAT32R datatype

Register

4x00010 The low word of the 32 bit float value 0x41BB999A is stored in the first 16 bit wide MODBUS
-9 register. This means the value 0x999A is stored here.

4x00011 The high word of the 32 bit float value 0x41BB999A is stored in the second 16 bit wide MODBUS
110 register. This means the value 0x41BB is stored here.

Now we show a common pitfall in writing and reading more than one MODBUS register and rebuilding a value. We
use a different float value. In hexadecimal it is 0x41BC41BB. Again we use the online converter:

Sign Exponent Mantissa
valle: +1 o 1.470755934715271
Encoded as: a 131 3943937
Binary:] FMOOO O > F W OFMMEFEOOONNOOCOCOCOFOFEFEFEOF @
Decimal Representation 23.532095
Binary Fepresentation 01000001101111000100000110111011

Hexadecimal Representation Ox4ibc4ibb

After casting to doubile precision 23.532094055444336

You notice, the float value is 23.532095.

Now we store it with HIGH word first into two registers:

MODBUS Storage of FLOAT32 datatype

Register

4x00010 The high word of the 32 bit float value 0x41BC41BB is stored in the first 16 bit wide MODBUS
1:9 register. This means the value 0x41BC is stored here.

HIGH WORD

4x000M The low word of the 32 bit float value 0x41BC41BB is stored in the second 16 bit wide MODBUS
10 register. This means the value 0x41BB is stored here.

LOW WORD

But now we make a very big mistake, we read the two registers and restore the hexadecimal value in our host
software in the reverse word order. First low word, then high word. The result is the 32 bit value 0x41BB41BC instead
the correct value 0x41BC41BB. Then we convert this into an IEE754 float value.

Sign Exponent Mantissa
walue: +1 od 1.4629435539245605
Encoded as: 0 131 3883452
Binary: [72 Y Y N 72 R O & FEFOFEEDOERDD DS E R
Decimal Representation 23.407097
Binary Representation 01000001101110110100000110111100

Hexadecimal Representation Ox41bbd1be

After casting to double precision 23.40709626279297

The result is 23.407097. This is not far away from the original number of 23.532095! So this massive software error
can be undiscovered for a long time. Only if the reverse float value generates numbers which are physically not
possible for the measured signal, this error is discovered!

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 28von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6.6

MODBUS data type table

The following table shows, how more complex data types are stored in successive 16 bit holding or input registers
within the MODBUS registers:

MODBUS SIZE WORD DESCRIPTION
DATATYPE ORDER
UINT16 16 bits none Defines a 16 bit unsigned integer value in the range of 0 to
1 register 65535 or 0x0000 to OxFFFF
SINT16 16 bits none Defines a 16 bit signed integer value in the range of -32768
1 register to +32767 or 0x8000 to Ox7FFF
UINT32 32 bits 0:High Word Defines a 32 bit unsigned integer value in the range of 0 to
2 register T:.Low Word 4.294.967.295 or 0x00000000 to OxFFFFFFFF
SINT32 32 bits 0:High Word Defines a 32 bit signed integer value in the range of
2 register 1:Low Word -2.147.483.648 to +2.147.483.6470r 0x80000000 to
Ox7FFFFFFF
UINT32R 32 bits 0:Low Word Defines a 32 bit unsigned integer value in the range of 0 to
2 register 1:High Word 4.294.967.295 or 0x00000000 to OXFFFFFFFF with reverse
word order
SINT32R 32 bits 0:Low Word Defines a 32 bit signed integer value in the range of
2 register 1:High Word -2.147.483.648 to +2.147.483.6470r 0x80000000 to
Ox7FFFFFFF with reverse word order
FLOAT32 32 bits 0:High Word Defines a 32 bit float value in the range of +1.4-10"*to
2 register 1:Low Word +3.403-10*. A mantissa of 23 bits and an exponent of 8 bits
are used. The value can store 7 to 8 digits after the comma.
FLOAT32R 32 bits 0:Low Word Defines a 32 bit float value in the range of +1.4-10"*to
2 register 1:High Word +3.403-10*. A mantissa of 23 bits and an exponent of 8 bits
are used. The value can store 7 to 8 digits after the comma.
The two 16 bit words are stored in reverse order.
DOUBLE6G4 64 bits 0:Highest Defines a 64 bit float value in the range of +4.24-107**to
4 register Word +1,79810°®. A mantissa of 52 bits and an exponent of 11
1:Higher Word | bits are used. The value can store 15 to 16 digits after the
2:Lower Word | comma.
3:Lowest
Word
DOUBLE6G4R 64 bits 0:Lowest Defines a 64 bit float value in the range of +4.24-107**to
4 register Word +1,798-10°®. A mantissa of 52 bits and an exponent of 11
1:Lower Word | bits are used. The value can store 15 to 16 digits after the
2:Higher Word | comma. The four 16 bit words are stored in reverse order.
3:Highest
Word

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

29von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6.7 MODBUS table

COILS (1x) & INPUTS (2x)

The module holds internally a list of 1 bit coil and input register. Those registers can be read by the host with the
function READ COIL STATUS (function code: 1). If the register can also be modified by the host, the host can use the
functions FORCE SINGLE COIL (function code: 5) and FORCE MULTIPLE COILS (function code: 15).

In addition the SAME registers are also readable over the function READ INPUT STATUS (function code: 2). This is for
host systems, which do not support all MODBUS/RTU functions properly.

The MODBUS convention defines 65535 possible coils with the notation 100001 to 1x65536. Inputs are usually
noted with 2x00001 to 2x65536. Please refer the software MODBUS POLL as a sample for this notation. Internally in
the MODBUS/RTU frames an index notation is used, which starts with 0 and ends with 65535. So we decided to
note in the following document a register with: 1x00100 for the coil 100, 2x00100 as a hint, that you can read this
register also as the input 100, and in addition also the real index of the protocol index 99 with the notation 1:99.

HOLDING REGISTER (3x) & INPUT REGISTER (4x)

The module holds internally a list of 16 bit wide holding register. Those registers can be read by the host with the
function READ HOLDING REGISTER (function code: 3). If the register can also be modified by the host, the host can
use the functions PRESET SINGLE REGISTER (function code: 6) and PRESET MULTIPLE REGISTERS (function code: 16).

In addition the SAME holding registers are also readable over the function READ INPUT REGISTER (function code:
4). This is for host systems, which do not support all MODBUS/RTU functions properly.

The MODBUS convention defines 65535 possible holding register with the notation 4x00001 to 4x65536. Input
register are usually noted with 3x00001 to 3x65536. Please refer the software MODBUS POLL as a sample for this
notation. Internally in the MODBUS/RTU frames an index notation is used, which starts with 0 and ends with 65535.
So we decided to note in the following document a register with: 4x00100 for the holding register 100, 3x00100 as a
hint, that you can read this register also as the input register 100, and in addition also the real index of the protocol
index 99 with the notation 1:99.

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 30von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

RESI Config RESI-C4-32DI12R0O,32DI12ROxAIOX-V1003 RESI-C4-xxx MB Basics
Register MODBUS Register ‘ NEW REAL NEW |DATA TYPE | DO
NAME Register VALUE VALUE VALUE WRITE
IPRODUCT INFO
HW_GROUP 3x65201 50176,0xC400 UINTI16
4165201 B:C4 00 R/O
165200
This is the group of hardware of the ourrent product
HW_TYPE IxB5202 1,0x0001 UINTIE
4x65202 B:00 01 R/O
165201
This is the type of hardware of the current product
SW_VERSION 3x65203 272,0:010 UINT16
4x65203 B:0110 R/O
165202
SW VERSION:0.1.0
This is the current software version of the firmware
SW_AUTHOR 3x65204 21321,065349 UINT16
4x65204 B:53 49 R/O
165203
This is the current software author of the firmware
MANUFACTURER 3x65205 1380275017,0x52455349 UINT32
[4x65205 B:52 4553 49 R/O
165204
This is the current software author of the firmware
NUMBER OF 1xB5207 0,0x0000 UINTIE
DIGITAL INPUTS 4x65207 B:00 00 R/O
165206
Number of DIS:0
This is the current software version of the firmware
NUMBER OF 3xb5208 0,0x0000 UINTIE
DIGITAL QUTPUTS 4x65208 B:00 00 R/O
L6507
MNumber of DOS0
This is the current software version of the firmware
NUMBER OF IxB5209 0,0x0000 UINT16
ANALOG INPUTS 4x65209 B:00 00 R/C
165208
Number of AIS:0
This is the current software version of the firmware
NUMBER OF wB5210 0,0x0000 UINT1E
ANALOG OUTPUTS 4x65210 B:00 00 R/O
165209
Number of ACS:0
This is the rent software version of the firmware

4.7 ASCII protocol

All of our loT controller communicate with very simple ASCIl commands with the LINUX software.
The following special characters are used in this description:

stands for the hash sign ASCII character 35dec or 0x23

: stands for the colon ASCII characters 58dec or 0x3A

= stands for the equal sign with the ASCIl code 61ec or 0x3D

- stands for the minus sign with the ASCIl code 45dec or 0x2D

, stands for the comma with the ASCII code 44dec or 0x2C

<CR> or e stands for the CARRIAGE RETURN ASCII character 13dec or 0xOD. This is shown as CR in the following.
<SP> or O stands for SPACE. This is the space in ASCIl code 32dec or 0x20. The space is shown as , hereinafter.

In the following <ADR> is used for the bus address. This can be transmitted in decimal or hexadecimal and is
separated from the following command with a comma (ASCII characters 44dec or 0x2C). Hexadecimal numbers
always start with Ox. Only the ASCII characters '0' - '9' 48dec to 57dec, 0x30-0x39 and 'A' to 'F', 65dec to 70dec,
0x41-0x46 may be used.

Our Co-processor uses always 255 or OxFF as a bus address. Due to the fact, that the Co-processor is the only
device on the serial line you can also avoid the bus number.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 3Tvon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

471 COMMUNICATION SEQUENCE

In principle, the Co-processor does not send any characters by itself. Communication always starts from the LINUX
software.

The command structure looks like this:

The host sends a command or a command with parameters without a bus address:
#<command><CR> or
#<command>:<parameter><CR>

The module responds when it feels addressed with the telegram:
#<respond><CR>

The host sends the following to the module with the bus address (For our Co-processor always 255 or OxFF):
#<ADR>,<command><CR> or
#<ADR>,<command>:<parameter><CR>

The Co-processor then replies with:
#<ADR>,<reply><CR>

472 Example: Query VERSION

This command provides the current type of the module.

Host command:
#VERSION<CR> or
#<ADR>,VERSION<CR>

Reply:
#VERSION: <HIGH>.<MED>.<LOW><CR> or
#<ADR>,VERSION:<HIGH>,<MED>,<LOW><CR>

<HIGH>.<MED>.<LOW> represents the current software version, e.g. 3.0.0

Examples:
#VERSIONcr
#VERSION:3.0.0cr

With broadcast address in decimal:
#255,VERSIONcr
#255,VERSION:3.0.0cr

With broadcast address in hexadecimal:
#OXFF,VERCR
#255,VERSION:3.0.0¢r

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 32 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

473 Example: Query module TYPE

This command provides the current type of the module.

Host command:
#TYPE<CR> or
#<ADR>,TYPE<CR>

Respond:
#TYPE:<TYP><CR> or
#<ADR>, TYPE:<TYP><CR>

<TYP> represents the current type of the module. A RESI-T4-A is shown as an example

Examples:
#TYPEcr
#TYPE:RESI-T4-Acr

#255,TYPcr
#255,TYPE:RESI-T4-Acr

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 33von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

474 Table of all ASCII

commands

For every loT controller you will find an actual list with all ASCII commands on our web server www.RESI.cc. Browse

to the product and download the PDF document with all commands.
The file name will be like RESI-L-<ProductName>-MODBUS+ASCII-EN.pdf

Only the version including the bus address is listed here. It has already been explained that this can also be omitted.
If an argument has the addition dec, it is returned as a decimal number. If an argument has the addition hex, a
hexadecimal number is returned. Many commands return both the decimal and the hexadecimal representation.
The host can thus choose which number conversion he would like to carry out.

Please refer to the description of individual products for more details about the available ASCII commands.

RESI Confi RESI-C4-32DI12R0,32DI12ROxAIOX-V1003 RESI-C4-xxx ASCII Basics
Register | MODBUS [Register ‘DATA TYPE | DO
NAME Register _[VALUE WRITE |
ASCIl COMMANDS
HEART BEAT (] #HB<CR> ASCI
EAD Result
OMMAND #HB <R
T . HB<CR>
I T —
Sends an Heartbeat to test the communication
GET VERSION (] #VERSION<CR> ASCIH
EAD Result:
COMMAND #VERSION: <VersionHi>, <VersionMed > <Versionla> <CR>
B T —
Actual SW version:1.1.0
Returns the verson number of the module
WVersionHi: Version number high (1..255)
VersionMed: Version number medium (1.255)
VersionLe: Version number low (1,255)
GET TYPE] #TYPE<CR> ASCI
READ Result:
OMMAND #TYPE <Type><CR>
]TX # <CR>
IEX Actual module type:RESI-C4-A-32DI12RO16AIOX
Returns the actual module type
GET FEATURES KSCII #FTRS<CR> ASCI
EAD Result:
COMMAND #FTRS <Type><CR>
12 #, <CR>
RX
Actual module type:N/A
Number of digital inputs:N/A
Type of digital inputs:N/A
Returns the actual module features
GET OWNER (] #OWNER<CR> ASCI
EAD Result
COMMAND 1#OWNER <Owner> <CR>
LES # R<CR>
FJ(Actual owner:RESI
Returns the actual owner of the module
RES! Informatik & Automation GmbH RESI-T4/C4 IoT Controller 34 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

http://www.RESI.cc/

5 Dimensions of our loT Controller
5.1 RESI-T4-xxx XT4 housing

42,3
4
90,2

62

48,3

L 110
I

I B

Figure: Dimensions of the housing for our T4 loT Controller in XT4 modules in mm

Dimensions
Housing LxWxH in mm 142.3x110x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 35von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our loT controller in XT4 format: Housing illustration in 3D

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 36von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

5.2 RESI-C4-xxx XT4 housing

— [
[o0]
:
| el | | el |
[s2]
§ Q)
Il 1=l
[ee]
=}
| =]
65
71,3
N
(e}
5e)
0
<
w
Yo}
AN
5 A
110
[il

Figure: Dimensions of the housing for our C4 loT Controller in XT4 modules in mm

Dimensions
Housing LxWxH in mm 71.3x110x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 37von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our C4 loT controller in XT4 format: Housing illustration in 3D

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 38von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

5.3 RESI-C4-xxx XT8 housing

L] | 1
@ \
e |
]
|
a1 | — —J —7 — | L1
|
. |
N ! 2 g
|
=] == = =
|
|
© 1
2 il
= = = H
T If
[L (I}
\
142,3

62

48,3

25,5

M ol

Figure: Dimensions of the housing for our C4 loT Controller in XT8 modules in mm

Dimensions
Housing LxWxH in mm 142.3x10x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 39von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our C4 IoT controller in XT8 format: Housing illustration in 3D

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 40 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

5.4 RESI-C4-xxx: XT12 housing

213
g ¢ 5
|
|
~ |
© |
Yo}
oo |
<
(1)
b
L 110 J
I I
Figure: Dimensions of the housing for our C4 loT Controller in XT12 modules in mm
Dimensions
Housing LxWxH in mm 213x110x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 41von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our C4 IoT controller in XT12 format: Housing illustration in 3D

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 42 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

6 Common functionalities ASCII+MODBUS

This part describes the common functionality of all RESI-T4 and RESI-C4 controller.
This are the access to the LEDS and the DIP switch, the internal real time clock and the internal ferromagnetic RAM.
Also the access to all status information of an IoT controller are described here.

For every product we offer an ASCIl command and MODBUS register list to know, how our co-processor can be
used and how the functionality is mapped to the different coils and registers of the specific loT controller.

6.1

All of our controllers offer three basic ASCIl commands:
TYPE to get the actual controller type

VERSION to read out the current software version of the ARM co-processor
FEATURES to retrieve the current features of the controller

Detecting the controller type and features

GET VERSION ASCIl #VERSION<CR> ASCI
READ Result:
COMMAND FYERSION: <VersionHi> <VersionMed > <Versionlos <CR>
X #255 VERSION <CR>
RX —
Actual SW version:1.1.0
Returns the versicn number of the module
VersionHi Varsion number high {1..255)
VersionMed: Version number medium (1.255)
VersionLo; Version number low (1.255)
GET TYPE ASCI #TYPE<CR> ASCIH
READ Result:
COMMAND. #TYPE. <Type><CR>
X 255 TYPE<CR>
RX —
Actual module typeRESI-C4-A-64DI60DOT6AIOK
Fetums the actual module type
GET FEATURES ASCI #FTRS<CR> ASCH
READ Result:
COMMAND #FTRS: < Type><CR>
TX #, <CR>
RX
Actual module type:N/A
Number of digital inputs:N/A
Type of digital inputs:N/A
Feturms the actual module features
RES! Informatik & Automation GmbH RESI-T4/C4 IoT Controller 43von153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same information can be retrieved from the MODBUS registers:
RESI Configurator RESI-C4-64D160D0,64D160DOxAIOX-V1003

RES/

RESI-C4-xxx MB Basics

Register | MODBUS Register | NEW REAL NEW |DATA TYPE | DO
NAME Reqgister VALUE VALUE VALUE WRITE
PRODUCT. INFO
HW_GROUP 3x65201 50176,0xC400 UINT16
4x65201 B:C4 00 RO
165200
This & the group of hardware of the current product
HW_TYPE 3x65202 1,0x0001 UINT16
4x65202 B:00 N RO
165201
This s the fype of hardware of the current product
SW_VERSION 3x65203 272,0¢0110 UINT16
4x65203 B:(n 10 R/O
165202
SW WERSION:010
This is the current software version of the firmware
SW_AUTHOR 3x65204 21321,0x5349 UINT16
4x65204 B:53 49 RO
165203
This is the current software author of the firmware
MANUFACTURER 3x65205 1380275017,0x52455349 UINT32
465205 B:52 45 53 49 R/O
165204
This & the current software author of the firmware
NUMBER OF 3x65207 0,0x0000 UINTI16
DIGITAL INPUTS 4x65207 B:00 00 RO
165206
MNumber of DIS:0
This is the current software version of the firmware
NUMBER OF 3x65208 0,0x0000 UINT16
CIGITAL QUTPUTS 4x65208 B:00 00 R/O
165207
MNumber of DOS:0
This & the current software version of the firmware
NUMBER OF 3x65209 0,0x0000 UINTIE
ANALOG INPUTS [4x65209 B:00 00 RO
165208
MNumber of AIS:0
This is the current software version of the firmware
MNUMBER OF 3x65210 0,0x0000 UINT16
ANALOG OUTPUTS 4x65210 B8:00 00 R/O
165209
Number of AQS:0
This is the current software version of the firmware
MNUMBER OF 3x6521 0,0x0000 UINT16
UMNIVERSAL INJOUTPUTS 4x65211 B8:00 00 R/Q
65210
Number of AIOX:0
This is the current software version of the firmware
NUMBER OF 3x65212 0,0x0000 UINT6
SPECIAL INPUTS 4x65212 B:00 00 R/O
65211
Number of special inputs.0
This is the current software version of the firmware
NUMBER OF 3x65213 0,0x0000 UINT1E
SPECIAL OUTPUTS 4x65213 B:00 00 R/O
65212
Number of special outputs:0
This is the current software version of the firmware
FEATURE1 3x65214 2,0x0002 UINT16
4x65214 B:00 02 R/O
165213
Feature:RS485
This is the feature list of the controller:
O:MOME, 1RS232, 2:R5485, 3:KNX, 4 DAL, S:MBUS, G:LORA, 7LTE, 8:2xETHERNET
FEATUREZ 3x65215 0,0x0000 UINTI6
4x65215 B:00 00 R/O
165214
Feature:NONE
FEATURE3 3x65216 0,0x0000 UINT16
4x65216 B:00 00 R/O
165215
FeatureNONE
FEATURE4 3x65217 0,0x0000 UINT16
4465217 B:00 00 R/Q
65216
Feature:NONE
FEATURES 3x65218 0,0x0000 UINT16
4x65218 B:00 00 R/O
65217
Feature:NONE
FEATUREG 3x65219 0,0x0000 UINT16
4x65219 B:00 00 R/O
165218
Feature:NONE
FEATUREY 3x65220 0,0x0000 UINT16
4x65220 B:00 00 R/O
165219
Feature:NONE

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

44 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

FEATUREB 3x65221 0,0x0000 UINT16
Axb5221 B:00 00 R/O
165220
Feature:NONE

6.2 Using the LEDs and DIP switch

Most of our IoT controller offer four LEDs organized in three LED outlets in the cover plate.
m LEDT: GREEN: DATA LED

m LED2: WHITE: STATE LED and LED3: RED ERROR LED

m LED4: YELLOW: INFO LED

Except of the INFO LED, which is used in some loT controllers internally you can use this LEDs in your software to
signal special states.

Also most modules offer an 8-pin DIP switch. Again this DIP switch is only for your software.

6.2.1 Reading the DIP switch in ASCII+MODBUS

To read the DIP switch you have to use the ASCII command GDIP. Below you see the specification in our document.
The co-processor returns the current status for the DIP switch as described below.

GET DIP SWITCH ASCI #GDIP<CR> ASCII
READ Result:
COMMAND #GDIP- < DIPSwitchDec> < DIPSwitchHex> <CR>
LS #255GDIP<CR>
RX <CR>
Actual DIP SWITCH settings:00000000

actual setting of the Dip switches as decimal number and as hexadecimal number.

You can also use MODBUS registers and coils get the current status of the DIP switch settings too. Search the PDF
document for DIP to find all possible MODBUS registers and coils:

DI SWITCH STATUS
DIP SWITCH 365501 85,060055 UINTI16
4x65501 B:00 55 R/O
L&5500
. ' =0:0FF
RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 45 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

Register MODBUS Register ‘ NEW REAL NEW ‘DATA TYPE | DO
NAME Register VALUE VALUE VALUE WRITE

DIP. SWITCH STATUS

DIP SWITCH DIP1 1%65001 nn BIT
2x65001 R/O
165000

Returns the actual setting of the Dip switches.

=0: DIF is OFF

=1, DIP is ON

DIP SWITCH DIP2 165002 nn BIT
2x65002 R/O
65001

DIP SWITCH DIP3 1x65003 777 BIT
2x65003 R/O
16500,

DIP SWITCH DIP4 1%65004 777 BIT
2x65004 R/O
165003

DIP SWITCH DIPS 165005 77 BIT
2x65005 R/O
165004

DIP SWITCH DIP6 165006 nn BIT
2x65006 R/O
165005

DIP SWITCH DIP7 Txb5007 nn BIT
2x65007 R/O
165006

DIP SWITCH DIP8 1%65008 77 BIT
2x65008 R/O
L6500

6.22 Update the LEDs in ASCIl+MODBUS

You can switch every LED to ON, OFF. You can INVERT the current LED state. And you can blink and flash the LED
with different timings. Also you can create a one time pulse on the LED. Additional commands retrieve the current
LED status.

In ASCII you can use the following commands for all four LEDs:
m LEDT: GREEN: DATA LED

m LED2: WHITE: STATE LED

m LED3:RED ERROR LED

m LED4: YELLOW: INFO LED

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 46 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

Sets the current state of the LED1:GREEN on the cover of madule 1o FLASH and defines the on and off intervals in Milliseconds between 20 and 600000

Register | MODBUS [Register ‘DATA TYPE ‘ DO
NAME Register __|VALUE WRITE__
LED STATUS:LEDT:GREEN
GET LED IASCII #GLED1<CR> ASCI
READ Result:
COMMAND "
™
RX
Returns the actual state of the LEDT:GREEN on the cover of module
LED. COMMANDS:LED1:GREEN
SET LED1 OFF ASCI #SL1OFF<CR> ASCII YES
WRITE Result:
COMMAND <CR>
.
IRX
Sets the current state of the LEDT:.GREEN on the cover of module to OFF
SET LED1 ON ASCI #SL1ON<CR> ASCI YES
'WRITE Result:
COMMAND
T
X
Sets the current state of the LEDT:GREEN on the cover of module to ON
SET LED1INVERT ASCH #SLIINV<CR> ASCI YES
WRITE Result:
COMMAND <(R>
|
IRX
Inverts the current state of the LEDT:GREEN on the cover of module from ON to OFF or from OFF 1o ON
SET LED1 PULSE ASCI #5LIPULSE: < PULSETIME > <CR> ASCII YES
WRITE Result:
COMMAND
PULSETIME 1000
T
Sets the current state of the LEDT:.GREEM on the cover of module 1o PULSE and defines the one time pulse duration in Milliseconds between 1 and 60000
SET LED1 BLINK ASCI #SLIBLINK: <BLINKTIME > <CR> ASCI YES
WRITE Result:
COMMAND H#OK<CR>
BLINKTIME 1000
IR
Sets the current state of the LEDT.GREEM on the cover of module 1o PULSE and defines the one time pulse duration in Milliseconds between 1 and 60000
SET LED1 FLASH ASCI #5LIFLASH: <ONTIME >, <OFFTIME > <CR> ASCI YES
'WRITE Result:
COMMAND #OK<CR>
ONTIME 200
OFFTIME 3000
.
IRX

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

47 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

On the MODBUS you can use coils to define the LED functionality:

LEDT.GREEN
LED1:GREEN 1x65009 nn N/A:DO NOTHING BIT NO
SET TO OFF 265009 W/O

65008
Writing 1 to this coil sets the LED to OFF
LED1:GREEN 65010 nn N/A:DO NOTHING BIT NO
SET TO ON 265010 W/0

65009
Writing 1 to this coil sets the LED to ON
LED1:GREEN 65011 nn N/A:DO NOTHING BIT NO
INVERT LED STATE 2xB5011 W/0

65010
Wiriting 1 1o this coil inverts the actual LED state
LEDT.GREEN 1x65012 nn N/A:DO NOTHING BIT NO
BLINK 2x65012 W/0

165011
[Writing 110 th;s coil start symmetrical blinking of LED with last defined time
LED1.GREEN [1x65013 777 N/ADO NOTHING BIT NO
FLASH 2365013 W/

165012
Writing 1 to this coil start asymmetrical flashing of LED with last defined times
LED1:GREEN x65014 77 N/A:DO NOTHING BIT NO
PULSE 2165014 W/0

165013
[Writing 1 to this coil start one time pulse of LED with last defined time
LED1:GREEN 165015 772 N/ADO NOTHING BIT NO
BLINK 5s 2x65015 W/O

65014
Writing 1 to this coil start symmetrical blinking of LED with 55 ON-5s OFF cycle
LED1:GREEN 1x65016 7 N/A:DO NOTHING BIT NO
BLINK 15 2x65016 W/O

65015
[Writing 1 to this coil start symmetrical blinking of LED with 1s OM-1s OFF cycle
LED1:GREEN k65017 " N/A:DO NOTHING BIT NO
BLINK 250ms 2x65017 W/0

L65016
Writing 1 to this coil start symmetrical blinking of LED with 250ms ON-250ms OFF cycle
LEDT:GREEN 165018 CEELd N/A:DO NOTHING BIT NO
BLINK 50ms 2x65018 WO

LOS0TT
Writing 1 to this coil start symmetrical blinking of LED with 50ms ON-50ms OFF cycle
LED1:GREEN 1165019 7 N/ADO NOTHING BIT NO
FLASH 5s-1s 2x65019 W/0

LE5018
Writing 1 to this coil start asymmetrical flashing of LED with 55 ON-15 OFF cycle
LED1:GREEN 65020 E£edd N/A:DO NOTHING BIT NO
FLASH 1s-250ms 2x65020 W0

165019
Writing 1 to this coil start asymmetrical flashing of LED with 15 OM-250ms OFF cycle
LED1:GREEN 65021 A N/A:DO NOTHING BIT NO
FLASH 500ms-100ms 2x65021 W/0

165020
Writing 1 to this coil start asymmetrical flashing of LED with 500ms ON-100ms OFF cycle
LEDT:GREEN 1265022 e N/A:DO NOTHING BIT NO
FLASH 300ms-50ms 2x65022 W/0

165021
Writing 1 to this coil start asymmetrical flashing of LED with 300ms ON-50ms OFF cycle
LED1:GREEN x65023 777 N/A:DO NOTHING BIT NO
PULSE 1s 2x65023 W/0

165022
[Writing 110 this coil start one time pulse of LED with 15 OMN
LED]:GREEI:J x65024 nr N/A:DO NOTHING BIT NO
PULSE 500ms 2x65024 w/0

165023
Writing 1 to this coil start one time pulse of LED with 500ms ON
LEDT:GREEN 65025 nr N/A:DO NOTHING BIT NO
PULSE 250ms 2x65025 w/0

165024
Writing 1 to this coil start one time pulse of LED with 250ms ON
LEDT:GREEN 65026 nn N/A:DO NOTHING BIT NO
PULSE 100ms 2x65026 Ww/0

165025
Writing 1 to this coil start one time pulse of LED with 100ms ON
LED1:GREEN 65027 ”n N/ADO NOTHING BIT NO
PULSE 20ms 2x65027 W/O

L6026
'Writing 1 to this coil start one time pulse of LED with 20ms ON

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 48 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Or you use registers:

LEDZ2:WHITE

LED2:WHITE 3x65505 T 1:SET TO ON UINTI6 NO
STATE 4x65505 RAW

165504

State of LED:2272

Returns the actual state of the LED
'Writing 1o this register will set a new state for the LED
0: Switch LED permanent OFF
1: Switch LED permanent ON
2: Invert last state of LED
3: Start symmetrical blinking of LED with TIME1 ON and TIMET OFF
4: Start asymmetrical flashing of LED with TIMET ON and TIMEZ OFF
5: Start one time pulse of LED with TIMET ON and inffinite OFF
LED2:WHITE 3x65506 kit 1000 UINTI6 YES
TIMET 465506 R/AW

1:65505

Actual time 1in ms:0

Returns the actual time for biink flash and pulse ON time in Millseconds
(Writing 10 this register sets a new time in the range 20-65534ms
LED2:WHITE 3165507 77 2000 UINT16 YES
TIME2 465507 R/W

165506

Actual time 2 in ms:0

Returns the actual time2 for blink and flash OFF time in Milliseconds
(Writing to this register sets a new time in the range 20-65534ms

6.2.3

Use the real-time clock

Our ARM co-processor offers an internal real-time clock with external capacitor backup if power fails.
Therefore you can use this RTC for your internal purposes as your date & time source. If you want to synchronize
this RTC with the LINUX date & time, you have to write code for this by yourself. This RTC is completely independent

from the LINUX.

First of all you can check the current capacitor voltage with the command GCPUBACK. This is the voltage of the
external capacitor, which will be loaded during power-on of the controller and used to drive the RTC while power is
off. It should be over 3V.

CPU PARAMETERS
GET CPU VOLTAGE ASCI #GCPUTEMP<CR> ASCI
READ Result:
COMMAND #QCPUTEMP:<CPUTemp> <CR>
TX <CR>
X
Actual internal temperature of CPU:41.4092°C
Current internal temperature of CPU in * Celsius.
GET CPU VOLTAGE ASCI #GCPUVOLT<CR> ASCI
READ :
CO
ITX
RX
Actual supply voltage of CPL:3 3453V
Current internal supply voltage of CPU in Volt
GET CPU BACKUP ASCI #GCPUBACK<CR> ASCI
READ Result:
COMMAND #GCPURACK < CPURackupVoltages <CR>
ITX F255IGCPUBACK<CR>
RX
Actual backup voltage of CPU for RTC:3.1871V
Current internal backup voltage of CPU for the RTC in Vot
Or with MODBUS registers:
CPU TEMPERATURE 3x65527 5061,0:13C5 UINT16
4x65527 B:13C5 R/O
65526
Actual internal temperature of CPU:50,61°C
Current internal temperature of CPU in * Celsius multiplied by 100
CPU VOLTAGE 3x65528 333,0x014D UINTIE
4x65528 B:014D R/O
65527
of CPU:3,33V
Current internal supply voltage of CPU in Valt multiplied by 1000,
CPU BACKUP 3x65529 IN,00137 UINT16
4x65529 BN 37 R/O
65528
Actual backup voltage of CPU for RTC:3,11V

Current internal backup voltage of CPU for RTC in Velt multiplied by 1000.

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

49 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Then you can read or write the current RTC date and time with:
ASCIl COMMANDS:REAL TIME CLOCK |

GET REAL TIME CLOCK ASCII #GRTC<CR> ASCI
READ Result:
COMMAND #GRTCYMD, <YEAR>, <MONTH >, <DAY > HMS, <HOUR >, <MINUTE >, < SECOND >, < WEEKDAY >
TX
RX
Actual date DD.MM.YYYY:5.1.2024
Actual time HH.MM.SS (24h):15:34:47

Actual Weekday FRI

Battery buffered date is ok:YES

|Batte§ buffered time is ok:YES
Shows current RTC time of battery backup RTC on module

ASCIl COMMANDS:REAL TIME CLOCK |

SET REAL TIME CLOCK ASCII #SRTC:YMD, <YEAR>, <MONTH>,<DAY > HMS, <HOUR >, <MINUTE >, < SECOND >, ASCII YES
IWRITE <WEEKDAY><CR>
COMMAND Result:
#OK<CR

YEAR 2024

MONTH 03

DAY 09

HOUR 10

MINUTE 42

SECOND 43

WEEKDAY SAT

R ——
RX

Executes a software reset (Reboot) of the module

Again with MODBUS registers:

RTC REAL TIME CLOCK
RTC YEAR 3x65231 24,0x0018 24 UINT16 NO
465231 B:0018 R/W
165230
T r24
Returns the actual year of the internal real time chock in the range of 24 to 99,
[Writing to this register prepares the setting of a new time.
RTC MONTH 3x65232 2,0x0002 1 UINT6 NO
4x65232 B:00 02 RAW
165231

jActual RTC month:2
Returns the actual month of the internal real ime clock in the range of 110 12
Writing 1o this register prepares the setting of 3 new time,

RTC DAY 3x65233 29,0x001D 1 UINT16 NO
4x65233 B:00 1D R/W
165232

JActual RTC day:29
Returns the actual day of the internal real time clock in the range of 110 31
Writing to this register prepares the setting of a new time,

RTC HOUR 3x65234 18,0x0012 12 UINT16 NO
4x065234 B:00 12 RAW
165233

Actual RTC month:18
Returns the actual hour of the internal real time clock in the range of 0 to 23
fiting to this register prepares the setting of a new time.

RTC MINUTE 3x65235 0,0x0000 145 UINT16 NO
4x65235 B:00 00 R/W
65234
RTC hour,0
Returns the actual minute of the internal real time clock in the range of 0 to 59
[Writing to this register prepares the setting of a new time.
RTC SECOND 3x65236 23,0x0017 30 UINT16 NO
4x65236 B:0017 R/W
165235
| RTC second:23
Returns the actual second of the internal real time chock in the range of 0 to 59
[Writing to this register prepares the setting of a new time,
RTC DAY OF WEEK 3x65237 4,0x0004 5:FRIDAY UINT16 NO
4%65237 B8:00 04 RIW
165236

| RTI k THU SELECT DAY OF WEEK

Retums the actual day of week in the range 110 7
TMON, 2TUE, 3WED, 4THU, SFRI B5AT, T5UN
Writing to this register writes a new date and time and weekday to the RTC

50von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 |oT Controller

6.24 Retrieve the unique serial number+box name

Our ARM Co-processor offers a unique 96 bit serial number for your software licencing. Together with the
parameter BOXNAME you can use this to protect your software running only on a specific device:

Use the following ASCIl commands to set an individual BOX name:

SET BOX NAME ASCII #SETBOXMAME: <BOXNAME=> <CR> ASCI YES
WRITE Result:
COMMAND #OK<CR>
|§OXNAME MYBOX
]TX 255, SETBOXNAME:MYBOX <CR>
RX
Sets a new box name for the controller
GET BOX NAME ASCIl #BOXMNAME<CR> ASCH
READ Result:
COMMAND ¥ < ame> <CR>
X EZ% BﬁXNAM&E R>
RX
ctual box name:MYBOX

Returns the actual box name of the madule. If no box name is defined, the value NONAME is returned

And retrieve the unique serial number with:
GET SERIAL NUMBER ASCII #5M<CR> ASCI
READ Result:

COMMAND [#SN <Serjal> <CR>

™ <CR>

RX

| ctual serial number:39002C000253554637303820

Fetums the actual serial number of the madule

The BOX name is not accessible via MODBUS, but the serial number can be read with:

CPU DATA

SERIALT 3x65521 34,0x0022 UINT16
4165521 B:00 22 R/O
165520

Serial number of module as 96 bit unsigned integer number

SERIALZ 3165522 24,0x0018 UINT16
465522 B:00 18 R/O
165521

SERIAL3 3x65523 2229,0:5713 UINT18
[4x65523 B:57 13 R/O
165522

SERIAL4 3xb5524 20547,0x5043 UINT18
[4x65524 B:50 43 R/O
165523

SERIALS 3xb5525 13361,0¢3431 UINT16
4x65525 B:34 31 R/O

_ 160524

SERIALG 3x65526 B246,0x2036 UINT16
4x65526 B:20 36 R/O
165525

SERIAL.220018001357435031343620
Serial number of module as 96 bit unsigned integer number

6.2.5 Use the ferromagnetic RAM

Our ARM Co-processor has a build in ferromagnetic RAM (FRAM) of 2kB. The read or write access cycles to this
FRAM is almost unlimited! All values are stored permanently. So after a power on all previous written values are
restored. You can rewrite every byte without the need to delete a bank or sector like a EEPROM or FLASH.

The controller uses this FRAM for storing all 10 watchdog values for digital and analog outputs and the 1O watchdog
timing. So you cannot use all of the 2kB for your application.

With the ASCII command GFRAMSIZE you can read the total size of the FRAM and the internal used bytes e.g. 210

bytes:
ASCIL COMMANDS:FRAM [
GET FRAMSIZE ASCI #GFRAMSIZE<CR> ASCII
READ Result:
COMMAND
X
RX
Reads the actual type and size of the used FRAM. The <UsedSize> describes the internal used space in bytes of the FRAM
RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 5Tvon 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

With the ASCIl commands GFRAM16, GFRAM32, GFRAMDBL you can read every FRAM memory location. Be aware
that the index O is the first byte you can use, you cannot write or read the internal used FRAM memory area.
Also you have to think about the byte size of your data, FRAM16 uses 2 bytes, FRAM32 4 bytes and FRAMDBL uses

8 bytes.

Writing to this memory will be done with SFRAM16, SFRAM32 or SFRAMDBL. You can use every byte index as a
start. But it makes sense to be even aligned!
BE AWARE: Writing a 32 bit value starting at byte 10 and the writing a 16 bit value starting at 12, will overwrite half of

the previous stored 32 bit value!

So if you write e.g. four 16 bit values you have to use the index 0, 2, 4 and 6
Writing e.g. 3 double values you have to use index 0, 8 and 16

GET FRAM16 ASCIl #GFRAM1E: <INDEX > <CR> ASCI
READ Result:
COMMAND #GFRAMIE: <INDEXDEC =, < VALUEDEC >, <INDEXHEX>, <WALUEHEX > <CR> or
#EERAMIG <INDEXOFC > FRR <\NDEXHFX> FRR<(CR=>
INDEX 350
TX
RX
|' FRAM Index in bytes:350
| [FRAM Value in decimal:0 |
Reads the actual UINTI6 value (2 bytes) of FRAM memory <INDEX>_
<INDEX> is a BYTE index in the FRAM strogae starting with 0.
GET FRAM32 ASCI #GFRAM32: <INDEX > <CR> ASCI
READ Result:
COMMAND #GFRAM32: <INDEXDEC>, <VALUEDEC >, <INDEXHEX >, < VALUEHEX> <CR> or
GFRAM3I? <INDFXDFC > FRR <INDFXHEX> FRR<CR
INDEX 50
TX
RX
| FRAM Index in bytes:350
| |[FRAM Value in decimal:0
Reads the actual UINT32 value 4 bytes) of FRAM memory <INDEX >
<INDEX > is a BYTE index in the FRAM strogae starting with 0
GET FRAMDBL ASCI #GFRAMDBL: <INDEX><CR> ASCI
READ Result:
COMMAND #GFRAMDBL: < INDEXDEC >, <VALUEDBL>, <INDEXHEX >, <VALUEDBL> <CR> or
JFRAMDBI - <INDEXDFC> FRR <INDEXHEX> FRE<CR
INDEX 400
TX
RX
[FRAM Index in bytes:400
| [FRAM Value in decimal:0 |
Reads the actual DOUBLE value B bytes) of FRAM memory <INDEX>.
<INDEX> is a BYTE index in the FRAM strogae starting with 0.
SET FRAM16 ASCIl #SFRAMIE: <INDEX >, <VALUE> <CR> ASCI YES
IWRITE Result:
COMMAND #SFRAMIE:OK<CR> or
#SFRAMIGFRR<CR>
INDEX 350
IVALUE 1234
e —
RX
Writes a new UINTI6 value (2 byte) into FRAM memory <INDEX>
<INDEX > is a BYTE index in the FRAM strogae starting with 0
SET FRAM32 ASCI #SFRAM32:<INDEX>, <VALUE=<CR> ASCI YES
WRITE Result:
COMMAND #SFRAM32:0K<CR=> or
#SFRAMIZ? FRR<(CR>
INDEX 350
VALUE 123456
X
RX
[Wirites a new UINT32 value {4 byte) into FRAM memary <INDEX=.
<INDEX> is a BYTE index in the FRAM strogae starting with 0.
SET FRAMDBL ASCI #SFRAMDBL: <INDEX >, <DOUBLEVALUE > <CR> ASCI YES
IWRITE Result:
COMMAND #SFRAMDBL:OK<CR> or
SFRAMDB| FRE<(R>
INDEX 1400
DOUBLEVALUE 3,1415926
TX
Writes a new DOUBLE value (8 byte) into FRAM memory <INDEX>,
<INDEX> is a BYTE index in the FRAM strogae starting with 0
RES! Informatik & Automation GmbH RESI-T4/C4 IoT Controller 52von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

You can also access this FRAM via MODBUS. For that use the UnitlD 2 for accessing the FRAM with READ HOLDING
REGISTER and WRITE SINGLE REGISTER or WRITE MULTIPLE REGISTERS commands.
Every register will store two bytes of the FRAM. Again index O will be the first two bytes you can use in the FRAM.

To detect the type and used bytes of the FRAM from system in MODBUS use this registers:

FRAM

GET FRAM TYPE 3x65224 2,0x0002 UINTI6
Axb5224 B:00 02 R/O
165223

FRAM size & type:FM25L16 2kB

Returns the current ytpe of the FRAM and its total size
=2 FM25L168_G, 2kB
=64 FM25V05, 64KE

=12B:FM25V10, 12848

GET FRAM USED BYTES 3x65225 166,0x00A6 UINT1&
4x65225 B:00 A6 R/O
165224

FRAM used bytes 166

Returns the amount of used bytes from systern in FRAM

6.2.6 Execute factory reset

In ASCII you can send the command FRST to restore all values in the FRAM to the system default values.
But you have to disconnect the loT controller from power, wait a little bit, and then reconnect the device to power,
so that all settings can be restored properly!

FACTORY RESET ASCI #FRST<CR> ASCII NO
'WRITE
COMMAND

RX

Executes a factory reset of the module

You can do the same with MODBUS using a coil or a register. Again you have to re-power the device. A reboot of
the LINUX alone has no effect!

FACTORY RESET 1x65535 0,000 1:PERFORM FACTORY RESET BIT NO
2xb65535 B:00 R/W
165534

Performs a factory reset of all internal saved parameters

FACTORY RESET 3x65535 0,0x0000 1:PERFORM FACTORY RESET UINT16 NO
4x65535 B:00 00 R/W
65534

Performs a factory reset of all internal saved parameters

6.2.7 Additional WATCHDOG for LINUX

The co-processor offers an additional watchdog for LINUX. This watchdog must be set by your software cyclically. In
ASCII use command WD:<WDTime> to set an interval in Milliseconds. If your software do not send this command
within the defined period again, the ARM Co-processor will reset the Raspberry Pi Core, this leads to a reboot of the
device!

WATCHDOG TIMER ASCI EWD<WDTIME=><CR> ASCII YES
WRITE Result:
COMMAND #0OK<CR>
WDTIME 0
TX
RX
Enables or disables the WATCHDOG Timer for the Raspberry Pi module.

'WOTIME:

[1.3600000: Time for Watchdog in Milliseconds (Maximum 60 Minutes)

=0: Mo Watchdog is generated

HINT: The Watchdog is internally handled every 10ms, so every value below 10 will reset immediately the Raspberry Pi computer.

The same watchdog is available for MODBUS. A value of 0 in both cases will deactivate the watchdog functionality.

RASPBERRY PI WATCHDOG TIMER [3x65223 0,0x0000 50 UINTI6 NO
465223 B:00 00 R/wW
1.65222
remaining watchdog time in 10ms:0 -> 0,000s

Enables or disables the WATCHDOG Tirmer for the Raspberry Pi module.
1.65535: Time for Watchdog in x10 Milliseconds (Maximum 655,35 seconds)
=0 No Watchdog is generated

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 53 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

6.2.8 INIT VALUES & COMMUNICATION WATCHDOG for 10s

The co-processor has a build in functionality to set the digital and analog outputs to a defined state after a power
on and if defined an 10 watchdog event.

Therefore you can define for every digital output configuration values (1 or 0), but this affects also the diagnostic
features of the digital outputs. For the universal analog 10s you can define for every configured analog output a
value which is outputted at system startup and in case of an IO watchdog event. See the specific chapters, how to
define this init & watchdog values for the digital outputs and universal analog IOs.

If the watchdog timer is set to 0, only after system startup the configured values are set on the outputs.
But if you set with the ASCII command SIOWATCHDOG a new IO watchdog time, the outputs will be set to the

configuration state if there is no ASCIl communication and no MODBUS communication for this time span!
With the command GIOWATCHDOG you can read the current settings. A O value deactivates the IO watchdog

feature.
SET 10 WATCHDOG TIMER ASCI #SIOWATCHDOG: <IOWDTIME = <CR> ASCI YES
'WRITE Result:
COMMAND #OK<CR>
IOWDTIME 0
i [F2S5SIOWATCHDOGO<CR>]
[Rx [ossokecR>] [

[Sets a new time for the internal 10 WATCHDOG Timer, <IOWDTIME > is a time in 100ms.
=0: No 10 Watchdog is used
HINT: The Watchdog is internally handled every 100ms, if the Timer reaches 0, all internal 105 will be set 1o a preconfigured state. Every ASCII command or MODBUS request will reset this timer.

GET 1O WATCHDOG TIMER ASCI #GIOWATCHDOG<CR> ASCII
READ Result:
COMMAND #

X

Returns the actual time for the internal 10 WATCHDOG Timer. <IOWODTIME > is a time in 100ms
=0 No 10 Watchdog is used
HINT: The Watchdog is internally handled every 100ms, if the Timer reaches 0, all internal 105 will be set to a preconfigured state. Every ASCIl command or MODBUS request will reset this timer.

The same watchdog is available for MODBUS.

[MODBUS WATCHDOG
MODBUS WATCHDOG TIME 3x65222 0,0x0000 50 UINT16 NO
465222 8:00 00 RAW
165221
Actual watch ime in 1/100s:0 -> 0.0s

[Writing a value cnto this register defines a new time for the internal communication watchdog timer. The value is a timespan in 1/100s.
=0 The communication watchdog is disabled
1.65535: Communication watchdog will be trigegred after x 1/100s pause on communication line

in case of an communication watchdog, the module sets all outputs to the states defined in the configuration cutput registers

Feading this register will return the current stored time from the internal FRAM

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 54 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7 RESI-T4-xxx loT Controller
7.1 Basic functionality of T4 loT family

Our RESI-T4 0T controller are based on the Raspberry® Pi 4 module.

In general the Raspberry Pi 4 Model B offers the following features:

m Processor: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit

SoC @ 1.5GHz

Memory: 1GB, 2GB, 4GB or 8GB LPDDR4 (depending on model) with on-die ECC
Connectivity: .4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless LAN, Bluetooth 5.0, BLE
1xGigabit Ethernet

2 x USB 3.0 ports

2 x USB 2.0 ports.

Video & sound: 2xmicro HDMI ports (up to 4Kp60 supported)

4-pole stereo audio and composite video port

Multimedia: H.265 (4Kp60 decode); H.264 (1080p60 decode, 1080p30 encode); OpenGL ES, 3.0 graphics
SD card slot: Micro SD card slot for loading operating system

LINUX® pre-installed

We added the following features to this board:

Industrial grade housing: 4MU 73x110x62mm

Mounting on DIN rail or on-wall

Industrial grade wide range power supply: 12-48Vdc

4 status LEDs and 8pin DIP switch for software usage

Maximum of three serial interfaces: RS232 or RS485

Optional one KNX interface

All serial interfaces appear as native serial lines in LINUX (dev/ttyACMO- dev/ttyACMn)
No need for specific LINUX kernel drivers or real-time OS

RS485 direction switching is done in hardware by Co-processor

ARM?® Co-processor for additional features:

m real time clock with backup capacitor

m Unique 96-Bit serial number

m 2kB ferromagnetic RAM

m handles the DIP switch and the LEDs

m ARM Co-processor is connected to LINUX via serial interface dev/ttyACMO and simple ASCII commands

Choice of RAM

More powerful
processor

UsB-C
Power
supply

GIGABIT
’\ ETHERNET

MICRO HDMI PORTS use3
Supporting 2 x 4K displays USB 2
Figure: Raspberry® Pi 4
RES! Informatik & Automation GmbH RESI-T4/C4 loT Controller 55von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/
7.2 RESI-T4-Z basic module

This version offers an industrial grade controller version, just with the Raspberry Pi4 Model B board and a robust 12-
48V= power supply.

Figure: Our RESI-T4-Z loT Controller

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 56 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.21 Technical specification

Beside the basic technical data, which fulfill all of our T4 loT Controller, this specific controller meets the following
technical specifications:

Power consumption <25W

Product housing T4-XT4

Product weight RESI-T4-Z 1759
RESI-T4-N-CAN 193g
RESI-T4-N-CFD 1939

No LEDs and no DIP switch
No ARM Co-processor

7.2.2 Additional terminals or functionalities

This loT controller has no additional terminals or functionalities.

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 57von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

723 Connection diagram
7.2.3.1 Cabling of the power supply and the Ethernet

This controller offers only terminals for power supply and a RJ45 connector for Ethernet. But the standard Raspberry
Pi 4 connectors are also available: 2xUSB 2.0, 2xUSB 3.0, 2xMicro HDMI, 1xAudio, 1xSD-CARD Slot.

Ethernet
12-48V=
ce RES/
=]

Figure: Connection schematics for our loT Controller

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 58 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.3 RESI-T4-xxx-CAN/CAN FD loT Controller
All of our RESI-T4 controller can also have a build in CAN 2.0 or CAN FD interface. This CAN interface can be used
by open source Raspberry Pi CAN software using SPIO.

7.3.1 Technical specification

Beside the basic technical data, which fulfill all of our T4 loT controller, this specific controller meets the following
technical specifications:

CAN interface

RESI-T4-xxx-CAN CAN 2.0 interface
RESI-T4-xxx-CFD CAN FD interface

CAN interface is connected to the SPIO interface of the Raspberry Pl

7.3.2 Additional terminals or functionalities

This module has an additional connector for CAN interface on the side of the Ethernet connector of the Raspberry

Pi 4.
CAN/CAN FD CAN 2.0 or CAN FD interface
Pin T: H: CAN HIGH signal
Pin 2: L: CAN LOW signal
Pin 3: G: CAN Ground signal
Terminal type: RM3.5
RESI Informatik & Automation GmbH RESI-T4/C4 |oT Controller

59von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.3.3 Connection diagram
7.3.3.1 Additional cabling of the CAN/CAN FD interface

In addition to the standard connectors described above, this loT controller offers a CAN or CAN FD connector.

CAN FD

Ethernet

CAN

Ethernet

RESI-T4-N-CFD-xGB

(44

RESI-T4-N-CAN-xGB

e RES]

=]

=

Figure: Connection schematics for CAN 2.0 or CAN FD connection of our loT controller

RESI Informatik & Automation GmbH

RESI-T4/C4 IoT Controller 60 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

74 RESI-T4-A,B,C,D with serial interfaces RS232 or RS485

We support various versions of our T4 loT controller with build in serial interfaces.
m RESI-T4-A-xGB: 3xRS485
m RESI-T4-B-xGB: 2xRS485 and 1xRS232
B RESI-T4-C-xGB: 1xRS485 and 2xRS232
m RESI-T4-D-xGB: 3xRS232

Figure: Our RESI-T4-A loT controller with three serial RS485 interfaces

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 6Tvon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

741 Technical specification

Beside the basic technical data, which fulfill all of our T4 loT controller, this specific controller meets the following

technical specifications:

Power consumption <25W
Product housing T4-XT4
Product weight RESI-T4-A,B,C,D 1929

RESI-T4-A,B,C,D-CAN 210g

RESI-T4-A,B,C,D-CFD 210g

4 LEDs and 8 pin DIP switch

ARM co-processor with real time clock+backup capacitor, 2kB ferromagnetic RAM

Serial interfaces

RESI-T4-A 3xRS485, automatic direction control

RESI-T4-B 2xRS485, automatic direction control
1xRS232

RESI-T4-C 1xRS485, automatic direction control
2xRS232

RESI-T4-D 3xRS232

Serial interfaces are connected as USB serial lines to LINUX with dev/ttyACMx in the Raspberry P!

742 Additional terminals or functionalities

This module has three additional connectors for serial interfaces.
Depending on loT controller:

Up to 3xRS485 or up to 3xRS232

RS485#7 RS485 serial interface
Pin T: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS$485 ground signal
Terminal type: RM3.5

RS232#7 RS232 serial interface

Pin 1:

TX: RS232 DATA+ signal

Pin 2: RX: RS232 DATA- signal
Pin 3: M-: RS232 ground signal
Terminal type: RM3.5
RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 62 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

743 Connection diagram
7431 RESI-T4-A additional cabling

Ethernet

B
Ee .
:
i
i

RESI-T4-A-xGB
@
O e
Owo
ce RES/

Figure: Connection schematics for our loT controller

7432 RESI-T4-B additional cabling

RS232
Ethernet RS485 .
RS485 _ _

Q00

e [M] [[m X[RX[-] [a+]B-[m] [A+]B-[M|
POWER POWER Rs2s2#1 | | Rsass#2 | [Rs4ss#s

RESI-T4-B-xGB
@~
O sumemon
Ow
e RES]

Figure: Connection schematics for our loT controller

RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 63 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.4.3.3 RESI-T4-C additional cabling

RS232
Ethernet RS232
RS485 _ _
J2-48V= A A SE——

........

nnnnnnnn

Figure: Connection schematics for our loT controller

7434 RESI-T4-D additional cabling

RS232
Ethernet RS232
RS232
J2-48V= e e -

oodlooofood

nnnnnnnn

Figure: Connection schematics for our loT controller

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 64 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.5 RESI-T4-KA,KB,KC with KNX interface+RS232 or RS485

We support various versions of our T4 loT controller with build in serial interfaces.
B RESI-T4-KA-xGB: 1xKNX, 2xRS485
B RESI-T4-KB-xGB: 1xKNX, 1xRS485 and 1xRS232
B RESI-T4-KC-xGB: 1xKNX, 2xRS232

Figure: Our RESI-T4-KA IoT controller with one KNX and two serial RS485 interfaces

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 65von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.51 Technical specification

Beside the basic technical data, which fulfill all of our T4 loT controller, this specific controller meets the following

technical specifications:

Power consumption <25W

Product housing T4-XT4

Product weight RESI-T4-KA KB,KC 194g
RESI-T4-Kx-CAN 210g
RESI-T4-Kx-CFD 210g

4 LEDs and 8 pin DIP switch

ARM co-processor with real time clock+backup capacitor, 2kB ferromagnetic RAM

Serial interfaces

RESI-T4-KA TXKNX

2xRS485, automatic direction control

RESI-T4-KB IXKNX

1xRS485, automatic direction control

1xRS232

RESI-T4-KC TXKNX

2xRS232

Serial interfaces are connected as USB serial lines to LINUX with dev/ttyACMx in the Raspberry P!

7.5.2 Additional terminals or functionalities

This module has three additional connectors for serial interfaces.
Depending on loT controller: IXKNX and up to 2xRS485 or up to 2xRS232

KNX KNX interface

Pin 1:

K+: KNX+ signal (RED)

Pin 2:

K-: KNX- signal (BLACK)

Terminal type:

RM3.5

To use the KNX interface you have to use an external KNX power supply!

RS485#? RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS$485 ground signal
Terminal type: RM3.5

RS232#7 RS232 serial interface
Pin 1: TX: RS232 DATA+ signal
Pin 2: RX: RS232 DATA- signal
Pin 3: M-: RS232 ground signal
Terminal type: RM3.5

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 66 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 67 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

753 Connection diagram

7.5.31 RESI-T4-KA additional cabling

Ethernet

L+ | M L+ | M K+ | K= At | B- |M-| [A+|B- |M-

RESI-TAKA-xGB
Qo
O e
O wo
e REs/

Figure: Connection schematics for our loT controller

7532 RESI-T4-KB additional cabling

Ethernet

000

L+ | M L+ | M- K+ | K- TX|[RX|M-| |A+|B- M-

RESI-T4-KB-xGB
oA

Qwo

........

€

B

=

Figure: Connection schematics for our loT controller

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

68 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.5.3.3 RESI-T4-KC additional cabling

Ethernet

L+ | M- L | M K+ | K- [TX|RX| M-| |TX|RX| M-

RESI-T4-KCXGB

@
O svmemon

O

e RES/

Figure: Connection schematics for our loT controller

RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 69 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8 RESI-C4-xxx loT controller
8.1 Basic functionality of C4 family

Our RESI-C4 IoT controller are based on the Raspberry® Pi Compute Module 4.

In general the Raspberry Pi Compute Module 4 offers the following features:

m Processor: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit

SoC @ 1.5GHz

Memory: 1GB, 2GB, 4GB or 8GB LPDDR4 (depending on model) with on-die ECC
1xGigabit Ethernet

2 x USB 2.0 ports.

Video & sound: 1xmicro HDMI ports (up to 4Kp60 supported)

Multimedia: H.265 (4Kp60 decode); H.264 (1080p60 decode, 1080p30 encode); OpenGL ES, 3.0 graphics
SD card slot: Micro SD card slot for loading operating system

LINUX® pre-installed

We added the following features to this board:
Additional integrated digital and analog inputs and output
Industrial grade housing: 4MU (73x110x62mm) or 8MU (143x110x62mm) or 12MU (213x110x62mm)
Mounting on DIN rail or on-wall
Industrial grade wide range power supply: 12-48Vdc
4 status LEDs and 8pin DIP switch for software usage
One serial interface: RS485
RS485 direction switching is done in hardware by Co-processor
Serial interface appears as native serial line in LINUX (dev/ttyACMO- dev/ttyACMn)
No need for specific LINUX kernel drivers or real-time OS
ARM® Co-processor for additional features:
m handles all integrated digital and analog 10s
m real time clock with backup capacitor
m Unique 96-Bit serial number
m 2kB ferromagnetic RAM
m handles the DIP switch and the LEDs
m ARM Co-processor is connected to LINUX via two independent serial interfaces
m dev/ttyACMO for communication with simple ASCII commands
m dev/ttyACM1 for communication with MODBUS/RTU Master protocol

Figure: Raspberry® Pi Compute Module 4

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 70von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.2 RESI-C4-A,-2E,-LTE with serial interface RS485

We support various versions of our C4 loT controller with build-in additional 10s and other features like 2nd
Ethernet interface or LTE modem.

m RESI-C4-A-xGB: 1xRS485, 1xMicro HDMI

B RESI-C4-A-2E-xGB: 1xRS485, 1xMicro HDMI, 2nd Ethernet Interface

m RESI-C4-A-LTE-xGB: 1xRS485, 1xMicro HDMI, LTE Modem (Quectel EC25)

Figure: Our RESI-C4-A loT controller with one serial RS485 interface and HDMI output

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 7Tvon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: Our RESI-C4-A-2E 10T controller with 1xRS485 interface, HDMI output and 2nd Ethernet Interface

RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 72 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: Our RESI-C4-A-LTE loT controller with 1xRS485 interface, HDMI output and LTE modem

RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 73von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.21 Technical specification

Beside the basic technical data, which fulfill all of our C4 loT controller, this specific controller meets the following

technical specifications:

Power consumption <25W
Product housing C4-XT4
Product weight

RESI-C4-A 1799
RESI-C4-A-2F 195g
RESI-C4-A-LTE 201g

4 LEDs and 8 pin DIP switch

ARM co-processor with real time clock+backup capacitor, 2kB ferromagnetic RAM

Serial interfaces

1xRS485, automatic direction control

Serial interface is connected as USB serial line to LINUX with dev/ttyACMXx in the Raspberry PI

2nd Ethernet

connected via USB 2.0 to CM4

native as eth1in LINUX available

LTE Modem

Quectel EC25

connected via USB 2.0 to CM4

native as wwan0 in LINUX available

after correct configuration and SIM card inserted

8.2.2 Additional terminals or functionalities

This module has one additional connector for serial interface.

1xRS485

SIO1 RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS$485 ground signal

Terminal type:

RM3.5

RESI Informatik & Automation GmbH

RESI-T4/C4 IoT Controller 74von153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.2.3
8.2.3.1

Connection diagram
RESI-C4-A additional cabling

RS485
12:48V=

« R&S/

Ethernet
USB 2.0 USB 2.0

#1 #2

HDMI

Figure: Connection schematics for our loT controller

8.2.3.2 RESI-C4-A-2E additional cabling

RS485
12-48V=

« R&s/

Ethernet #2

Ethernet #1
USB 2.0 USB 2.0

#1 #2

HDMI

Figure: Connection schematics for our loT controller

RESI Informatik & Automation GmbH RESI-T4/C4 |oT Controller

75von153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.2.3.3

RESI-C4-A-LTE additional cabling

RS485

12-48V= \ / N

Q o
O evacren

Omw

« Res/

Ethernet

USB20 USB20
LTE #1 #2
HDMI ,I[[
loT CLOUD

Figure: Connection schematics for our loT controller

RESI Informatik & Automation GmbH RESI-T4/C4 |oT Controller

76von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3 Which IO types do our RESI-C4 series offer

Our loT controllers offer various combinations of digital inputs and outputs and universal analog inputs and outputs.
Also we offer various types of relay outputs and special modules.

Therefore in this section we explain the basic principal of each IO class.

831 Digital inputs DC 12-48V=

This input type supports DC signals with 12-48Vdc. It drives the input with max. 1.8mA current. Also the digital inputs
are not galvanically insulated from the rest of the controller. So connect the ground of your power supply for the
input signal with the ground of your loT controller.

Figure: Our RESI-C4-A-24DI loT controller with 24 digital inputs

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 77 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.1Technical specification

The digital inputs meets the following technical specification

DIGITAL INPUTS

Sampling rate

As fast as possible

Internal software filter ~35-80ms

DC rating

Input voltage range

12-48V= +/-10%

Input current

per channel

approx. 0,8mA@12V=

approx. 1.5mA@20V=

approx. 1.8mA@24V=

approx. 2.5mA@32V=

approx. 4.0mA@48V=

Input power consumption

max. 0.3W/channel

Logic levels 0: <3.8V=
1. >47V=
Terminal type RM3.5

Galvanic insulation

No, ground of digital inputs is wired to ground of loT controller

RESI Informatik & Automation GmbH

RESI-T4/C4 IoT Controller /8von153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.2 Additional terminals or functionalities

Depending on the module the digital inputs are grouped in 6 or 16 inputs on one terminal block

DIGITAL INPUTS

Input groups Terminal type: RM3.5
C Common ground: wired to system ground
1.n: Digital input 1-n

O=open or connected to ground

1=DC voltage between 12 and 48V=

Pin layout 6 digital inputs for 12-48Vdc signals
One 8 pin plug-in terminal block
Pin T: C: Common ground
Pin 2: 1: Digital input #1
Pin 7: 6: Digital input #6
Pin 8: C: Common ground
or 16 digital inputs for 12-48Vdc signals
One 18 pin plug-in terminal block
Pin 1: C: Common ground
Pin 2: 1: Digital input #1
Pin 17: 16: Digital input #16
Pin 18: C: Common ground
INFO If at least one of the digital inputs is activated (ON), this LED is ON.

If none of the digital inputs are activated (OFF), this LED is OFF.

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 79von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.3 Cabling of the digital inputs

DIGITAL INPUTS

ANALOG IN/JOUTPUTS 9..12 ANALOG IN/OUTPUTS 13..16

RESI-C4-A-16DI15DO16AIOX-xGB

OOOMM
OSTATE-ERROR
O INFO
ON
OFF
12 3 4 5 8 7 8
LI T O I O Y |
n 2 B MU F F2 F3 F4
ce RES/
ANALOG IN/OUTPUTS 1.4 ANALOG IN/OUTPUTS 5.8

14| 1- [2+] 2- | 3+ 3- | 4+ | 4- 5+|5-|6+|6-|7+| 7-|8+]| 8

DIGITAL OUTPUTS s
HOMI SD-CARD 1]2]3]4]s]e[7]8]9]10]1]12]13]14]15] [c]+

— =F51000000000000000

I
- J

Figure: Example of cabling of the digital inputs to a RESI-C4-A-16DI15DOT6AIOX |oT controller

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 80 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.14

8.3.1.4.1 Digital input filter

Using the digital inputs with ASCII+MODBUS

Our digital inputs are read internally as fast as possible. But we filter the digital inputs with a software filter based on
5ms filter time. The digital filter looks every 5ms at the last 16 samplings. If more than 7 samples have the state ON,
the actual input status will be ON. So some glitches on the digital inputs are filtered and will have no effect. So the
response time is around 35-80ms depending how many glitches your signal has.

8.314.2 Current status of digital inputs
In ASCII you can read the current status of the digital inputs with the commands GDIS or GDlIx:
ASCIl COMMANDS
DIGITAL INPUTS
GET DIGITAL INPUTS ASCI #GDIS<CR> ASCH
READ Result:
COMMAND |# < >.< >< >.< ex><CR>
X 255,GDIS<CR>
R %
Actual status of digital inputs:
DI1-32:0000.0000.0000.0000.0000.0000.0000.0000
DI33-64:1000.0000.0000.0000.0000.0000.0000.0000
<DISADec>, <DISAHex>DIT-32
<DISBDec>, <DISBHex> DI33-64
Returns the actual state of all digital inputs as decimal number and as hexadecimal number.
DISADec, DISAHex
The current state of all digital inputs;
Bit O State of DI (=0:0FF, =1.0N)
Bit 1: State of DI2 (=0:0FF, =1:0N)
Bit 2 State of D13 (=0:0FF, =1:.0N)
it 29 State of DI30 (=0.0FF, =1.0N)
Bit 30: State of D131 (=0:0FF, =1.0N)
Bit 31: State of DI32 (=0:0FF, =1.0N)
DISBDec, DISBHex
The current state of all digital inputs:
Bit O State of DI33 (=0.OFF, =10N)
Bit 1 State of D34 (=0:0FF, =1:ON)
Bit 2: State of DI35 (=0:OFF, =1ON)
Bit 29 State of DIB2 (=D:OFF, =1:0N)
Bit 30: State of DIB3 (=0:0FF, =1.0N)
Bit 31: State of DIG4 {=0:20FF, =1:0N}
GET DIGITAL INPUT Dix IASCII #GDI<DINR><CR> ASCII
READ Result:
COMMAND [#GDI< 2.< >< ><(R>
DINR 1
ITX [1<CR>
RX
Actual status of digital input DI1:0=0FF
<DINR>: 1=011. 64=D164
In MODBUS you have many coils and registers which will show the actual digital input state:
Here are registers for coils or inputs (Every input as one bit):
Register NAME MODBUS Register VALUE MNEW REAL NEW DATA TYPE Do
Command NAME Register ASCIl Command WVALUE VALUE WRITE
ASCI
Command
STATUS DIGITAL INPUTS
D 1%00001 wn BIT
2x00001 R/O
10
Actual state of DI1:0=0OFF
Current state of the digital input Dix
=001 is OFF, =1:Dlis ON
DI2 100002 nn BIT
2x00002 R/Q
11
Actual state of DI2:0=CFF
DI3 1x00003 nn BIT
2x00003 R/O
L2
Actual state of DI3:0=0FF
The same readout can be done by holding or input registers:
STATUS DIGITAL INPUTS
DN 3x00001 0,0x0000 UINT1E6
L4x00001 B:00 00 R/O
(K]
[Actual state of DI1.0=0OFF
[Current state of the digital input Dix
=001 is OFF, =1.D1is ON
DI2 3x00002 0,0x0000 UINTI6
4x00002 B:00 00 R/O
11
Actual state of DI2:0=0FF
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 8Tvon 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can also read all digital inputs together:

STATUS OF ALL DIS 3x10002 0,0x0000
Din..DI6 4x10002 B:00 0O
110001

UINT16
R/O

Actual state of DI1.0=0FF

Actual of DI2.0=0FF

Actual state of DI3:0=0FF

Actual state of DI4:0=0FF

Actual state of DIS:0=0FF
Actual state of DI6:0=0FF

Actual of DI7.0=0FF

Actual state of DIB:0=0FF

Actual state of DIS0=0FF

[Actual state of DI10.0=0FF

Actual state of DIN:0=CFF

Actual state of DI12:0=0FF

Actual state of DI13:.0=0FF

Actual state of DI14:.0=0FF

ctual state of DI15:0=0FF

ctual state of DI16:0=0FF

Actual state of all digital inputs DI1_DN2
Bt 0: =0:D07 is OFF, =101 s ON
Bit - =0:DI2 is OFF, =1DI2 is ON

Bit 14: =0:DI15 is OFF, =1.DI15 is ON
Bit 15: =0:DIG is OFF, =1:DI16 is OM

STATUS OF ALL DIS 3x10003 0,0x0000
onz.pis2 14x10003 B:00 00
110002

UINT16
R/O

ctual state of DI17:0=0FF

ctual state of DI18:0=0FF

Actual state of DI19:0=0FF

Actual state of DI20:0=0FF
ctual state of DI21:0=0FF
ctual state of DI22:0=0FF
ctual state of DI23:0=0FF
ctual state of DI24:0=0FF
ual state of DI25:0=0FF
tual state of DI26:0=0FF
tual state of DI27:0=0FF
ctual state of DI28:.0=0FF
ctual state of DI29:0=0FF
Actual state of DI30:0=0FF
Actual state of DI31:0=0OFF
al e of DI32:0=0FF

Actual state of all digital inputs DI1.DN2
Bit 0: =007 is OFF, =1D17 is ON
Bit 1: =0:DN8 is OFF, =1:D18 is ON

8it 14 =0:DI31 is OFF, =T:DI31 i5 ON
it 15 =0:D132 is OFF, =1:D132 is ON

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 82 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.143 Change & event counter for inputs

The firmware in the co-processor detects the following events for every digital input:

m Rising edge

m Falling edge

m Short keypress

m Long keypress start
m Long keypress end

To detect very fast in your software if anything on the inputs has changed since your last poll use this ASCII

command:
GET ALL CHANGES ASCI #GAC<CR=> ASCI
READ Result:
COMMAND #OAC <ChangesDec> <ChangesHex> <CR>
TX 2! <CR>
|B)< Actual change counter:8

Returns the counter for changes on all digital inputs.
As soon as the module detects a short keypress or long key press or long key release event, this counter is incremented by 1.
Iif this values has changed sience the last polling request, the host knows, that at least one digital input has changed its state.

On MODBUS read this register:

HAS DIS CHANGED 3x1000T 32,0x0020 UINT16
L4x10001 B:00 20 R/O
1110000
32 event(s)

As soon as the module registrates an event on one of the available digital inputs, this global event counter & incremented by 1.
Possible everits are

[Detection of a short keypress

(Detection of the start of a long keypress

(Detection of the end of a long keypress

lts an event counter starting with O after power on.

So this value can be incremented not only by 1 for the next readout. But in your software you can save the last
readout value. If the new readout value is different to the saved one, you know, that something has happened on
the digital inputs.

But you can also readout the changes for every digital input separately:
In ASCII use this command to read blocks of 16 inputs:

(CHAMNGE ALL DIS SCI #CADISP<PART><CR> ASCIH
PART x READ Result:
COMMAND #CADISP<PART=>:<ChangeDInDec>, ., <ChangeDin+15Dec>,
<ChangeDinHey ChangeDin+15Hey> <CR
PART 4
ITX ADISP4<CR>
RX

Actual counter for changes on DI43:0
Actual counter for changes on DISO.0
Actual counter for changes on DIST:0
Actual counter for changes on DIS2:0
Actual counter for changes on DIS3:.0
Actual counter for changes on DIS4:0
Actual counter for changes on DIS5:0
Actual counter for changes on DIS6:0
Actual counter for changes on DIST:0
Actual counter for changes on DIS8:0
Actual counter for changes on DI59:0
Actual counter for changes on DIG0:0
Actual counter for changes on DI6T:0
Actual counter for changes on DI62:0
Actual counter for changes on DI63:3
Actual counter for changes on DI64:2

<PART=>: 1.4, 1=D1-DNG, 2=DI17-D132, 3=D133-DME, 4=D149-DI64

Returns for each digital input the counter for changes. As soon as the module detects a signal change on a digital input, the change counter for the affected digital input is incremented by 1
A signal change can be:

Detection of a short keypress

[Detection of the start of a long keypress

(Detection of a release of a long keypress

The parameter <PART> defines the part of the digital inputs. The command returns maximal 16 digital inputs.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 83 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

or for only one digital input:

(CHANGE Dix ASCI #CDI<DINR> <CR> ASCII
READ Result:
COMMAND #CDI<DINR > <ChangesDec> <ChangesHex> <CR>
DINR 1
TX <! >
RX
Actual counter for changes on digital input DIT:1

<DINR>: 1=0I1.64=D164

Returns for digital input <DINR> the counter for signal changes. As soon as the module detects a signal change on a digital input, the change counter for the affected digital input is incremented by 1.
A signal change can be:

(Detection of a short keypress

Detection of the start of a long keypress

[Detection of a release of a long keypress

On the MODBUS use this registers with one bit. On every change this bit toggles. But be aware, if you are not fast
enough you can miss a change because maybe there are more than one changes on the digital inputs since your

last poll.

DIGITAL INPUTS: DIGITAL INPUT. HAS CHANGED. IT'S STATE

DI HAS CHANGED DI 1x20001 1.0x01 BIT
2x20001 B0 R/O
120000

f the digital input has changed this bit inverts its last state

DI HAS CHANGED D12 1x20002 1,0x01 BIT
2x20002 B:O1 R/C
120001

DI HAS CHANGED DI3 1x20003 0,0x00 BIT
2x20003 B:00 R/Q
120002

DI HAS CHANGED D14 1x20004 0,0x00 BIT
2x20004 B:00 R/O
120003

Or you use a table for every digital input, which stores all events. Here you will find a counter for every type of event

for one specific digital input. e.g. DI3
DIGITAL INPUTS: STATUS FOR DIGITAL INPUT DI3

RISE DI3 %0702 4,0x0004 UINT16
4x07021 B:00 04 R/O
1:7020
4 event(s)
FALL D3 3x07022 4,0x0004 UINTI6
4x07022 B:00 04 R/Q
17021
4 event(s)
CHANGE DI3 T07023 6,0x0006 UINTIE
4x07023 8:00 06 R/O
17022
[6 event(s)
[SHORT KEYPRESS DI3 0704 2,0x0002 UINTI6
4107024 B:00 02 R/O
;7023
2 event(s)
LONG KEYPRESS START DI3 3x07025 2,010002 UINTI6
4x07025 B:00 02 R/O
17024
2 event(s)
LONG KEYPRESS END DI3 3x07026 2,0x0002 UINTI6
4x07026 B:00 02 R/O
17025
2 event(s)

There is another short form table in MODBUS for every digital input with all its events for faster readout:
DIGITAL INPUTS

STATUS DIT A 3x05001 0,0x0000 UINT16
14305001 B:00 00 R/C
15000
DI:0,CC:0,REC:0,FEC:0

[Status for the digital input Dix

Bit 0-4: Lower 5 bits of CHANGE COUNTER

Bit 5-9: Lower 5 bits of RISING EDGE COUNTER

Bit 10-14: Lower 5 bits of FALLING EDGE COUNTER

Bit 15 Current Status of Dix =0: Dix si OFF, =1: Dix is ON

STATUS DI B 3x05002 0,0x0000 UINT16
Ax05002 B:00 00 R/C
15001
DI:0,5KE:0,LKSE:0,LKEE:Q

[Status for the digital input Dix

Bit 0-4: Lower 5 bits of SHORT KEYPRESS EVENTS

Bit 5-9: Lower 5 bits of LONG KEYPRESS START EVENTS
Bit 10-14: Lower 5 bits of LONG EEYPRESS END EVENTS
Bit 15: Current Status of Dix =0: Dlx si OFF, =1: Dlx is ON

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 84 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same information can be read via ASCIl commands:

m SHORT KEYPRESS EVENT COUNTER: SKDIx or SKADISPp
LONG KEYPRESS START EVENT COUNTER: LKSDIx or LKSADISPp
LONG KEYPRESS END EVENT COUNTER: LKEDIx or LKEADISPp
RISING EDGE EVENT COUNTER: RDIx or RADISPp
FALLING EDGE EVENT COUNTER: FDIx or FADISPp

For example here is the ASCII description for short keypress event:

SHORT KEY ALL DIS ASCII #SKADISP<PART><CR> ASCII
PART x READ Result:
ICOMMAND #SKADISP <PART>:<ShortKeyDInDec>,..., <ShortkeyDin+15Dec=,
<ShortKeyDinHex>, <ShortKeyDin+15Hex> <CR>
PART 14
IR 255,5KADISP4<CR>
RX

iActual counter for short keypress events on DI49:.0
Actual counter for short keypress events on DIS0:0

Actual counter for short keypress events on DIS1:0
Actual counter for short keypress events on DI52:0
Actual counter for short kg!gess events on DI53:0
iActual counter for short keypress events on DI54:.0
(Actual counter for short keypress events on DIS5:0

Actual counter for short keypress events on DIS6:0
(Actual counter for short keypress events on DIST:0

Actual counter for short keypress events on DIS8:0

Actual counter for short keypress events on DI60:0
Actual counter for short keypress events on DI61:0
Actual counter for short keypress events on DI62:0
Actual counter for short keypress events on DI63:
Actual counter for short keypress events on DI64:

D
D
D
D
D
iActual counter for short keypress events on DIS2:0
D
D
D
D
D

<PART=: 1.4, 1=D01-DI16, 2=D117-DI32, 3=D133-DI48, 4=D145-Di64

Returns for each digital input the counter for short keypress events. As soon as the module detects a short keypress on a digital input, the counter for the affected digital input is incremented by 1.

The parameter <PART> defines the part of the digital inputs. The command returns maximal 16 digital inputs

SHORT KEY Dlx ASCI #5KDI<DINR><CR> ASCII
READ Result:
COMMAND # < e >, »<(R>
DINR 1
1L 255,5KDI1<CR>

|B)< |Actual counter for short keypress events on digital input DI1:1 |

With the ASCII command RESET COUNTERS you can set all counters to O

<DINR>: 1=DI1.64=DI54

RESET COUNTERS ASCH ASCI NO
'WRITE
COMMAND
X
IRX
Resets all internal counters for digital inputs and events on this digital inputs to 0.
The same command on MODBUS for coil:
DIGITAL INPUTS: RESET
RESET COUNTERS 110000 nn 1;PERFORM RESET BIT NO
2x10000 R/AW
1:9999
if this register is written to 1, all internal edge counters and event counters are set to 0. 0 is always retumed when reading
and for holding register:
DIGITAL INPUTS: RESET
RESET COUNTERS 3x10000 0,0x0000 1:.PERFORM RESET UINT16 NO
[4x10000 B:00 00 RAW
1:9999
if this register is written to 1, all internal edge counters and event counters are set to 0. 0 is always returned when reading.
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 85von153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

8.314.4 ASCII Events

The firmware in the co-processor can send the actual status of all digital inputs in case of a change on the digital
inputs automatically without the need of polling the current status. But be aware, that then the co-processor sends
this string whenever a change occurs. This has to be handled by your software. Also the event can be send before
the ASCII answer to an ASCII request is sent back!

To activate this event feature, simply send EVTON command. After that command, the controller will send at every
change of a digital input a telegram in the format:

For controller with less or equal to 32 digital inputs:
#255,EVT:DIS: <StateOfDI1-32 in Dec>,<StateOfDI1-32 in Hex>
e.g. DI1 has changed from 0 to 1:

#255,EVT:DIS:1,0x1

For controller with more than 32 digital inputs:

#255,EVT:DIS: <StateOfDI1-32 in Dec>, <StateOfDI33-64 in Dec>,<StateOfDI1-32 in Hex>,<StateOfDI33-64 in Hex>
e.g. DI33 has changed form 0 to 1
#255,EVT.DIS:0,1,0x0,0x1

To switch this events off, send EVTOFF command

DIGITAL INPUTS EVENTs

EVENTS ON ASCI HEVTON<CR> ASCI NO
[WRITE Result:
COMMAND #OK<CR=>
[TX #255,EVTON<CR>
RX ,OK<CR>
Activates event sending of changes on digital inputs

Wher I
#<BusAdr>

ar a change is det 1 the digital inputs, the 10 module sends immediately
EVT:DIS: <AlDISasDec>, < AllDISasHe

ex><CR>
EVENTS OFF IASCI #EVTOFF<CR> ASCI NO
IWRITE Result:
COMMAND #0OK<CR>
ITX #255,EVTOFF<CR>
RX LOK<CR>
Deactivates event sending of changes on digital inputs
Whenever a change is detected or O module sends immediately

<BusAdr> EVT-DIS:<AllDISasDec>, <

RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 86 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

83.2 Digital outputs DC £30V=

This output type supports DC semiconductor outputs for maximum 30Vdc output voltage. It drives every output
with a maximum current of 700mA. Also the outputs are organized in groups of 6, 12 or 15 digital outputs with own
output power supply. Every output group is limited to a maximum output current of 1.8A and can have its own
power supply. But the grounds of all power supplies are internally connected with the M- of the IoT controller.
Extensive diagnostic features are available for every output: Thermal overload, over-current, shortcut to power
supply, open wire.

Figure: Our RESI-C4-A-64DI60DO16AIOX IoT controller with 60 digital outputs

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 87 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.1 Technical specification

The digital outputs meets the following technical specification

DIGITAL OUTPUTS
Update rate As fast as possible
DC rating
Output voltage range 10-36V= +/-10%, typical 24V=
Output current max. 700mA
Diagnostic Loss of power supply
Thermal overheating
Overload
Over-current
Open wire in state ON and OFF
Shortcut to power supply in state OFF
Terminal type RM3.5
Galvanic insulation No, the digital output groups are internally tied to ground of
the 10T controller
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 88 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.2 Additional terminals or functionalities

Depending on the module the digital outputs are grouped in 6, 12 or 15 outputs on one terminal block

DIGITAL OUTPUTS
Output groups Terminal type: RM3.5
Sx.C Common ground: wired to system ground
SX:+: Power supply input max. 30Vdc
1.n: Digital output 1-n
O=output is open
1=output is closed and delivers the voltage
of the Sx:+ terminal
Pin layout power supply of output group
Pin 1: Sx:C: Common ground
Pin 2: Sx:+: Power supply 10-30Vdc
6 digital outputs for DC signals max. 700mA
One 6 pin plug-in terminal block
Pin 1. 1: Digital output #1
Pin 6: 6: Digital output #6
or 15 digital outputs for DC signals max. 700mA
One 15 pin plug-in terminal block
Pin 1. 1: Digital output #1
Pin 15: 15: Digital output #15
INFO If at least one of the digital outputs is activated (ON), this LED is ON.
If none of the digital outputs are activated (OFF), this LED is OFF.
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 89von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.3

Cabling of the digital outputs

| ANALOGINIOUTPUTS 9.12_| | ANALOG INOUTPUTS 13.168 |

RESIC4-A-16DI15DO16AIOX-xGB

© oow
O swmemon
Owo
PRLELELL
ce RES/
[anaoe 14| [.8 |

1#|1-[2r]2-|3+[3-[4+|4 | [5+]5 |6+|6-|7+]|7-|6+[6-

[DIGITAL OUTPUTS |
[1]2]a]«]s]e]7 s s[10]n]r2]1a4a]15] [cT+

I~ PRFPPPRPRPRPRQPRP
| W
] o] !
[} [} '
1 ' .
1 1 1
[) [)
llllll:l:lllllll:l:l :
lllllll:l:llllllll:l:l.
llllllllllllllcl:l. L+ max
LU T T T I I A O | —
lllllllllllllll: _ 30Vdc
Lo-0-0000060-00000-0--- 18A
Ethernet
USB 2.0 USB 2.0
#1 #2
HDMI

Figure: Example of cabling of the digital outputs to a RESI-C4-A-16DI15DO16AIOX loT controller

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

90von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.24 Using the digital outputs with ASCII+MODBUS
8.3.2.4.1 Update all digital inputs & outputs

In ASCII there is a special command to update all digital outputs and read back the actual state of all digital inputs

with one command:
IASCII COMMANDS

DIGITAL QUTPUTS
UPDATE DIGITAL ASCI #UDIOS: <OutAlIDOS> <CR> ASCI YES
INPUTS AND OUTPUTS IWRITE Result:

COMMAMD ZUDI0S: <InAlDISDecs <InAllDISHexs < CR>

DO1 0:0OFF

DO2 0:OFF

DO3 0:OFF

DO4 0:0OFF

DOS 0:0OFF

DO6 0:0FF

DO7 0:0FF

DO8 0:QFF

DO9 0:OFF

DO10 0:OFF

DOMN 0:OFF

D012 0:OFF

D013 0:OFF

DO4 0:0OFF

DO15 0:0OFF

ITX |# <CR>

RX

Actual status of digital inputs:0000.0000.0000.0000

[Sets all digital outputs to the new state OutAlIDOS and gives back the current status of all digital inputs INAIIDIS as decimal and hexadecimal value
(OutAlIDOS: The new state for all digital outputs

Bit 0: State of DO1 (=0:0FF, =1:0N)

Bit 1: State of DO2 (=0:0FF, =1:0N)

Bit 2: State of DO3 (=0:0FF, =1.0N)

7 12: State of DO13 (=0:0FF, =1ON)
Bit 13. State of DO14 (=0:0FF, =1:ON)
Bit 14: State of DOIS (=0:0FF, =1:0N)

InAIIDIS: The current state for all digital inputs
Bit (1 State of DI {=0:0FF, =1:0MN)
Bit 1: State of D42 {=0:0FF, =1.0MN)
Bit 2: State of DI3 (=0:0FF, =1:0N)

ént 13: State of DN4 (=0:0FF, =1:.0N)
Bit 14: State of DNS (=0.0FF, =1.0N)
Bit 15: State of DG (=0:0FF, =T.0N)

8.3.24.2 Current status of digital outputs
In ASCII you can read the current status of the digital outputs with the commands GDOS or GDOx:

GET DIGITAL OUTPUTS }ASCII #GDOS<CR> ASCII
READ Result:
COMMAND #GD0% <DOSDec> <DOSHex> <CR>
ITX <CR>
|_B>(
Actual status of digital outputs:000.0000.0000.0000

Retums the actual state of the digital outputs as decimal number and as hexadecimal number.
DOSDec, DOSHex

The current state of the digital outputs

Bit 0: State of DO (=0:0FF, =1:0N)

Bit 1: State of DO2 (=0:0FF, =1.0N)

Bit 2: State of DO3 (=0:0FF, =1:0ON}

Bit 12: State of DO13 (=0:0FF, =1.0N)
Bit 13: State of DOM4 (=0:0FF, =1.0N)
Bit 14: State of DO15 (=0:0FF, =1:0N)

GET DIGITAL OQUTPUT DOx ASCII #GD0O<DONR=<CR=> ASCII
READ Result:
COMMAND H#GDO<DONR><D0xDecs <D0xHexs <CR>
DONR 2
[TX [#. <CR>
RX
Actual status of digital output DO2:0=0FF

Retumns the actual state of the digital output DOx as decimal number and as hexadecimal number.
(DOxDec, DOxHex

The current state of the digital output DO

=0: relay output is OFF

=1 relay output is ON

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 9Tvon 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

For writing an new state to a digital output in ASCII use the command SDOS or SDOx:

<DONR>: 1=D01.15=D015

SET DIGITAL QUTPUTS |ASCI #5D0S:<OutAlDOS > <CR> ASCI YES
|WRITE Result:
(COMMAMND #FOK<CR>
DO1 0:OFF
DO2 0:OFF
D03 0:OFF
DO4 0:OFF
DO5 0:0FF
DO6 0:OFF
DO7 0:OFF
DO8 0:OFF
DO9 0:OFF
DO10 0:OFF
Domn 0:0FF
DO12 0:OFF
DO13 0:OFF
DO14 0:OFF
DO15 0:OFF
|TX <CR>
IRX
Sets all digital outputs ta the new state OutAlIDOS
The new state for all digital outputs
Bit 0: State of DO (=0:OFF, =1.0M)
Bit 1 State of DO2 (=0:0FF, =1:0M})
Bit 2: State of DO3 (=0:0FF, =1.0N}
Bit 12: State of DO13 (=(:OFF, =1ON)
Bit 13: State of DO14 (=0:0FF, =1.ON)
Bit 14: State of DO5 (=0:0FF, =1:0N)
SET DIGITAL OUTPUT DOx |ASCI #SD0O<DONR>:<0ut> <CR=> ASCI NO
|WRITE Result:
COMMAND #OK<CR>
DONR
DOx 0:OFF
[TX <CR>
[RX

In MODBUS you have many coils and registers which will show the actual digital output state or with which you can
set a new output state:

Here are tables for coils (every output as one bit):

STATUS DIGITAL QUTPUTS
DO 1x00017 mwn 1 BIT NO
2x00017 RAW
116
Actual state of DO1.0=0FF ENTER NEW STATE {0 or 1)
[Current state of the digital output DOx
=0.00 is OFF, =1.D0 is OM
Writing on this register changes the state of the digital output
DO2 1x00018 7 0 BIT NO
2x00018 R/W
117
Actual state of DO2:0=0FF ENTER NEW STATE (0 or 1)
The same reading and writing can be done by holding registers:
STATUS DIGITAL QUTPUTS
nle]] 3x00017 0,0x0000 1 UINT16 NO
4x000717 B:00 00 RAW
116
Actual state of DO1.0=0FF ENTER NEW STATE {0 or 1)
[Current state of the digital output DOx
=0.00 is OFF, =1.D0 is OM
Writing on this register changes the state of the digital output
DO2 3000718 0,0x0000 0 UINT16 NO
4x00018 8:00 00 RAW
117
Actual state of DO2:0=0FF ENTER NEW STATE (0 or 1)
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 92 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can also read and write to digital output groups in holding register:

STATUS OF ALL DOS 3x10003 0,0x0000 OxTFFF UINT16 NO
DO1-DONS 410003 B:00 00 R/W
L0002

IActual state of DO1.0=0FF
Actual state of DOZ2:.0=0FF
Actual state of DO3.0=0FF
of DO4:0=0FF
A | of DO5:0=0FF
Actual state of DO6:0=0OFF
|Actual state of DOT7:0=0FF
|Actual state of DO8:0=0FF
Actual state of DO9:0=0FF
[Actual state of DO10:0=0FF
[Actual state of DO11:0=CFF
Actual state of DO12:0=0FF
Actual state of DO13:.0=0FF
of DO14:0=0FF
A | of DO15:0=0FF

Actual state of all digital outputs
Bit 0. =001 is OFF, =1.001 s ON
Bit 1: =0:DO2 is OFF, =1:002 is ON

Bit 13: =0:D014 s OFF, =100 is ON
Gt 14: =0:D015 is OFF, =1DOT5 is ON

[Write an this register sets all digital outputs to a new state

83243 Pulsing the digital outputs

With a special ASCII command you can initiate a one time pulse on a specific output. You can read back the

remaining duration of the current output pulse.
DIGITAL OUTPUTS: PULSE OUTPUT

PULSE DOXx lAsCll #PDO <DONR>:<Time> <CR> ASCII YES
IWRITE Result
(COMMAND #OK<CR>
DONR 2
[TIME 200
[TX 255, PDO2:200<CR>
[Rx

<DONR>:1=D01.15=DO15
<Time=>: 0..65535*100ms

This command switches the digital output DOx on for the pulse duration <PulseTimeln100ms>*100ms.
PulseTimeln100ms: A duration in 100ms units
The corresponding digital output is switched on for this time period

GET PULSE TIMER DOx ASCI #GPT<DONR><CR> ASCI
READ Result:
(COMMAND #GPT:<TimeDec> <TimeHex> <CR>
DONR 2
[TX 255,GPT2<CR>
RX
f Actual pulse time for DO2:19,8s

<DONR>: 1=D01.15=D015

[Retumns the remaining timer value of the pulse for digital output DOx in ms
PulseTimelnMSDec, PulseTimelnhMSHex

The remaining time of the pulse in Milliseconds

But you can also initiate this digital output pulse with this MODBUS registers:
PULSE TIME FOR DIGITAL OUTPUTS

PULSE TIME DO1 3x20001 0,0x0000 200 20,0 UINT16 YES
14x20001 B:00 00 R/W
1:20000

(Generate a pulse on digital output x in 100ms units (0,1 to 6553,5 Seconds selectable)
if you write onto this register, the digital cutput will be switched on for the desired time in 100ms units.

PULSE TIME DD2 3x20002 0,0x0000 300 30,0 UINT6 NO
4x20002 B:00 0O R/W
1.20001

PULSE TIME DO3 3x20003 0,0x0000 400 40,0 UINTI6 NO
14x20003 B:00 00 R/W
120002

PULSE TIME DO4 3x20004 0,0x0000 500 50,0 UINT16 NO
4x20004 B:00 00 R/W
1. 20003

The remaining time for the current pulse can be read with this registers:
PULSE STATUS FOR DIGITAL OUTPUTS

PULSE TIMER DO1 321001 0,0x00000000 UINT32
4x21001 B:00 00 00 0O R/O
[:21000
0,0 seconds
Remaining time of the pulse on digital output x in Milliseconds.
PULSE TIMER DO2 3x21003 0,0x00000000 UINT32
4x21003 B:00 00 00 0O R/O
121002
0.0 seconds
PULSE TIMER DO3 3x21005 0,0x00000000 UINT32
4% 21005 B:00 00 00 0O R/O
21004
0,0 seconds
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 93 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

PULSE STATUS FOR DIGITAL OUTPUTS

PULSE TIMER DO1 3x21031 0,0x00000000 UINT32R
14x21031 B:00 00 00 00 R/O
1:21030

0.0 seconds

Remaining time of the pulse on digital output x in Milliseconds,

PULSE TIMER DO2 3x21033 0,0x 00000000 UINT32R
[4x21033 B:00 00 00 00 R/O
|-'."|07?

0.0 seconds

83244 Diagnostic information for digital outputs
Our digital outputs offer many commands to retrieve diagnostic information of a digital output or a chipset for a

group of digital outputs.

The main diagnostic features per output are:

m Detect open wire while DO=ON

m Detect open wire while DO=OFF
]

m Detect thermal overload for DOx
m Detect current limit for DOx

Th

Thermal shutdown

Detect shortcut to power supply (VDD) while DO=0OFF

e main diagnostic features for a chipset are:
Is SPI communication OK
An overload situation was detected
A current limit was detected
A supply error was detected
A communication error was detected
Internal under voltage detected
External power supply VDD not good detected (<17V)
External power supply VDD warning detected (<12V)
External power supply VDD under voltage detected (<8V)

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

94 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2441 General diagnostic status of every chip

First we concentrate on the general diagnostic features per chipset.
Every chipset can drive up to 8 digital outputs. So for a 30DO module, we build four chips into the module.

With the command GDOINTS you will get the status of all chips. When you want to read out only one chip use

GDOINTx command. Please refer to the command list for the meaning of every bit.
DIGITAL OUTPUTS: INTERRUPT STATUS

GET DIGITAL QUTPUTS WASCI #GDOINTS<CR> ASCII
INTERRUPT STATUS READ Result:
COMMAND |# (< > < ><CR>
ITX 255,GDOINTS <CR>
RX
Actual interrupt status of all digital output groups:
(CHIP #1:0100.0000
CHIP #2:0100.0000

digital output group #1, chip #1.001-DOB

digital output group #2, chip #2:009-DO15

[Returns the actual interrupt state of all output groups as decimal number and as hexadecimal number
InterruptStatusDec InterruptStatusHes: The current interrupt state of digital output group 1-4 (CHIP-4)
For each chip 8 bits are used, CHIP#1:Bits 0-7, CHIP#2:Bits 8-15

Bit Or Overload detected (0=0K,1=FAULT}

Bit 1: Current limit detected{0=0K.1=FALLT)

Bit 2: Open wire while OFF detected (0=0K,1=FAULT)
Bit 3: Open wire while ON detected (0=0K1=FAULT}

Bit 4: Shart to VDD while ON detected {0=0K,1=FALLT)
Bit 5: Thermal error detected-shutdown (0=0K1=FALULT)
Bit & Supply error detected (0=0K,1=FAULT)

Bit 7. Communication errar detected (0=0K1=FAULT)

GET DIGITAL OUTPUT GROUPx WASCI #GDOINT <DOGRP = <CR> ASCI
INTERRUPT STATUS READ Result:

COMMAND #GDOINT <DOGRP > <InterruptStatusDecs < InterruptStatusHex> <CR>

DOGRP 2

ITX 255GDOINT2<CR>

RX

| Actual interrupt status of digital output group 2:0100.0000

<DOGRP>: 1=CHIP1.2=CHIPZ

digital cutput group #1, chip #1.001-DO8

digital output group #2, chip #2:009-DO15

[Returns the actual interrupt state of the digital cutput group DOGRP as decimal number and as hexadecimal number
InterrupiStatusDec, InterruptStatusHex

Bit (rOverload detected (0=0K 1=FAULT)

Bit 1:Current limst detected{0=0K1=FAULT)

Bit 2:0pen wire while OFF detected (0=0K1=FALLT)

Bit 3:0pen wire while ON detected (0=0K1=FALULT)

Bit 4:5hort to VDD while ON detected (0=0K,1=FAULT)
Bit 5:Thermal error detected-shutdown (0=0K,1=FALULT)
Bit 6:5upply error detected (0=0K,1=FAULT)

Bit 7:.Communication error detected (0=0K 1=FAULT)

The same information you can retrieve from the MODBUS. You can read coils or holding registers to retrieve the
information:

DIGITAL OUTPUTS: INTERRUPT STATUS
(CHIP. #1.001-DO8
INTERRUPT STATUS 1x00168 777 BIT
BITO 2x00168 R/O
1167
|BIT 0:Overload detected:0=0K
INTERRUPT STATUS 100169 nn BIT
BIT1 2x00169 R/O
1168
[BIT T:Current limit detected:0=0K
INTERRUPT STATUS 1x00170 77 BIT
BIT 2 2x00170 R/O
1169
EIT 2:0pen wire while OFF detected:0=0K
INTERRUPT STATUS 00171 7 BIT
BIT 3 2x00171 R/O
1170
[BIT 3:0pen wire while ON detected.0=0K
DIGITAL OUTPUTS: INTERRUPT STATUS
[CHIP. #1:001-DO8
INTERRUPT STATUS 3x00168 0,0x0000 UINT16
BITO 4300168 8:00 00 R/O
1167
|BIT 0:Overload detected:0=0K
INTERRUPT STATUS 3x00169 0,00000 UINT16
BIT1 4500169 B:00 00 R/O
1168
BIT 1:Current limit detected.0=0K
INTERRUPT STATUS 3x00170 0,0x0000 UINT16
BIT 2 4300170 B:00 00 R/O
169
| BIT 2.0pen wire while OFF detected 0=0K
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 95von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 96 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Also you can read a holding register with compact information:
CHIP #7:D046-DOS3
|CHIP. #8:0054-DO60

INTERRUPT STATUS 3x10049 16448, 04040 UINT16
FOR CHIP#7+#8 4x10049 B:40 40 R/O
110048

BIT 0:CHIP#3:Overload detected:0=0K

BIT 1:CHIP#3:Current limit detected:0=0K
BIT 2:CHIP#3:0pen wire while OFF detected:0=0K

BIT 3:CHIP#3:0pen wire while ON detected:0=0K

BIT 4:CHIP#3:Shortcut to VDD detected:0=0K

BIT 5:CHIP#3:Thermal shutdown:0=0K

BIT 6:CHIP#3:Supply error detected:1=FAULT

BIT 7:CHIP#3:Communication error detected:0=0K

BIT 8:CHIP#4:Overload detected:0=0K
BIT 9:CHIP#4:Current limit detected:0=0K
BIT 10:CHIP#4:0pen wire while OFF detected:0=0K

BIT 11.CHIP#4:0pen wire while ON detected:0=0K

BIT 12:CHIP#4:Shortcut to VDD detected:0=0K

BIT 13:CHIP#4:Thermal shutdown:0=0K

BIT 14:CHIP#4:Supply error detected:1=FAULT

BIT 15:CHIP#4:Communication error detected:0=0K

The interrupt state for the output group, Each bit stands for a different error
=0:No fault, =1:Fault

The command GDOERRS will retrieve the error status of all chips:

DIGITAL OUTPUTS: GLOBAL ERRORS

GET DIGITAL OUTPUTS lasCi #GDOERRS<CR> ASCI
(GLOBAL ERRCRS READ Result:
COMMAND #GDOERRS: <GlobalErrorsADec >, <GlobalErrorsBDec,
GlobalFrarsAHex> <GlohalFrrarsBHexs <CR
ITX |, <CR>
RX

Actual global errors of all digital output groups:

CHIP #1:0001.1100

CHIP #2:0001.1100

CHIP #3:0001.1100
CHIP #4:0001.1100
ICHIP #5:0000.0000
CHIP #6:0000.0000
CHIP #7:0001.1100
CHIP #8:0001.1100

digital output group #1, chip #1:.001-DO7
digital output group #2, chip #2.D08-DCN5
digital output group #3, chip #3.0016-D022
digital autput group #4, chip #4:0023-D030
digital output group #5, chip #5:0031-D038
digital output group #6, chip #6:0039-D045
digital output group #7, chip #7.0046-D053
digital output group #8, chip #8:0054-D0B0

Returns the actual current global error state of all output groups as decimal number and as hexadecimal number
GlobalErrorADec. GlobalErrorAHex: The current global error state of digital output groups 1-4 (CHIP1-4)

For each chip B bits are used: CHIP#1:Bits 0-7, CHIP#2:Bits 8-15, CHIP#3:Bits 16-23, CHIP#4:Bits 24-31
(GlobalErrorBDec, GlobalErmorBHex: The current current global error state of digital output groups 5-8 (CHIPS-8):
For each chip B bits are used: CHIP#25:Bits 0-7, CHIP#6:Bits 8-15, CHIP#7Bits 16-23, CHIP#8:Bits 24-31

Bit 0: Internal under voltage detected (0=0K,1=FAULT)

Bit 1: VA under voltage detected (<2.3V) (0=0K,1=FAULT)
Bit 2: VDD not good detected {<17V) (0=0K,1=FAULT)

Bit 3: VDD warning detected (<12V) (0=0K 1=FAULT)

Bit 4: VDD under voltage detected (<8V) (0=0K,1=FAULT)
Bit 5: Thermal shutdown ([0=0K,1=FAULT)

Bit 6: Synchronisation error detected (0=0K1=FAULT)

Bit 7: Watchdog error detected (0=0K1=FALLT)

Again you can read only one chip with GDOERRx command:

GET DIGITAL OUTPUT GROUPx Cll #GDOERR<DOGRP> <CR> ASCI
(GLOBAL ERRORS READ Result:

C 1#GDOERR <DOGRP>: <GlobalfrrorsDec>. <GlobalErrorsHex> <CR=>

DOGRP 8

[TX 2 DOERRB<CR>
|BX
Actual global errors of digital output group 8:0001.1100

<DOGRP>: 1=CHIP1. 8=CHIP

digital output group #1, chip #1:001-DO7
digital output group #2, chip #2.D08-D015
digital output group #3, chip #3:0016-D022
digital output group #4, chip #4:0023-DO30
digital output group #5, chip #5:0031-DO38
digital output group #6, chip #6:0039-D045
digital output group #7, chip #7:0046-D053
digital output group #8, chip #8.0D054-DOG0

Retums the actual interrupt state of the digital output group DOGRP as decmal number and as hexadecimal number
interruptStatusDec, InterruptStatusHex

Bit O0:Internal under voltage detected (0= 0K 1=FAULT)

Bit 1:VA under voltage detected (<2.3V) [0=0k,1=FAULT)

Bit 2VDD naot good detected (<17V) (D=0K,1=FALLT)

Bit 3:VDD waming detected (<12V) (0=0K1=FAULT)

Bit 4 VDD under voltage detected (<8Y) (0=0K1=FAULT)

Bit 5:Thermal shutdown (0=0K,1=FAULT}

Bit 6:5ynchronisation error detected (0=0K,1=FAULT)

Bit 7-Watchdog error detected (0=0K1=FAULT)

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 97 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 98 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Again you can read the same information via MODBUS coils or holding registers:

DIGITAL OUTPUTS: GLOBAL ERRORS

ICHIP.#1.001-DO7
(GLOBAL ERRORS 1%00605 wn BIT
BITO 2x00605 R/O
L1604
[BIT Diinternal under voltage detected.0=0K
GLOBAL ERRCRS 100606 7777 BIT
BIT1 2x00606 R/O
1605
EEIT 1:VA under voltage detected (<2.3V):0=0K
(GLOBAL ERRCRS 00607 7777 BIT
BIT 2 2x00607 R/O
L606
[BIT 2:VDD not good detected (<17V):0=0K
(GLOBAL ERRCRS 1x00E08 777 BIT
BIT 3 2x00608 R/O
607
BIT 3:VDD warning detected (<12V):0=0K
(GLOBAL ERRORS 100609 wmn BIT
BIT 4 2x00609 R/O
L608
ESIT 4VDD under voltage detected (<8V):0=0kK
GLOBAL ERRCRS 1%00610 7 BIT
BIT 5 2x00610 R/Q
1609
|BIT 5:.Thermal shutdown:0=0K
GLOBAL ERRCRS 100611 777 BIT
BIT 6 2x0061 R/O
L610
|BIT &:5ynchronisation error detected:0=0K
(GLOBAL ERRCRS 100612 777 BIT
BIT7 2x00612 R/O
1611
BIT 7:Watchdog error detected:0=0K
The global error state for the output group. Each bit stands for a different error
=0:Mo fault, =1Fault
DIGITAL OUTPUTS: GLOBAL ERRORS
ICHIP.#1.001-DO7
(GLOBAL ERRORS 3x00605 0,0x0000 UINT16
BITO 400605 B:00 00 R/Q
L1604
[BIT Orinternal under voltage detected:0=0K
GLOBAL ERRCRS 3x00606 0,0x0000 UINT16
BIT1 4x00606 B:00 00 R/Q
1605
EEIT 1:VA under voltage detected (<2.3V):0=0K
(GLOBAL ERRCRS 3x00607 0,0x0000 UINT16
BIT 2 4x00607 B:00 00 R/O
606
[BIT 2:VDD not good detected (<17V):0=0K
(GLOBAL ERRCRS 3x00608 0,0x0000 UINT16
BIT 3 4x00608 B:00 00 R/O
607
BIT 3:VDD warning detected (<12V):0=0K
(GLOBAL ERRORS 3x00609 0,0x0000 UINT16
BIT 4 4x00609 B:00 00 R/O
L1608
ESIT 4VDD under voltage detected (<8V):0=0kK
GLOBAL ERRCRS 3x00610 0,0x0000 UINT16
BIT 5 4x00610 B:00 00 R/Q
1609
|BIT 5:.Thermal shutdown:0=0K
GLOBAL ERRCRS 3x00611 0,0x0000 UINT16
BIT 6 4x00611 B:00 00 R/O
610
|BIT &:5ynchronisation error detected:0=0K
(GLOBAL ERRCRS 3x00612 0,0x0000 UINT16
BIT7 4x00612 B:00 00 R/O
611
BIT 7:Watchdog error detected:0=0K
The global error state for the output group. Each bit stands for a different error
=0:Mo fault, =1Fault
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 99 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Or you read the compact info from holding registers:

CHIP #3:0016-D0O22

CHIP. #4:0023-DO30

(GLOBAL ERRCRS 3x10043 7196,0x1C1C UINT16
FOR CHIP #3+#4 4x10043 BC1C R/O
110042

BIT 0:CHIP#3:Internal under voltage detected:0=0K

BIT 1:CHIP#3:VA under voltage detected (<2.3V):0=0K

BIT 2:CHIP#3:VDD not good detected (<17V):1=FAULT

BIT 3:CHIP#3:VDD warning detected (<12V):1=FAULT

BIT 4:CHIP#3:VDD under voltage detected (<8V):1=FAULT

BIT 5:CHIP#3:Thermal shutdown:0=0K

|BIT 6:CHIP#3:Synchronisation error detected:0=0K

BIT 7:CHIP#3:Watchdog error detected:0=0K

BIT 8:CHIP#4:Internal under voltage detected:0=0K

BIT 3:.CHIP#4:VA under voltage detected (<2 3V):0=0K

BIT 10:CHIP#4:VDD not good detected (<17V):1=FAULT

BIT 11:CHIP#4:VDD warning detected (<12V):1=FAULT

BIT 12:CHIP#4:VDD under voltage detected (<BV):1=FAULT

BIT 13:CHIP#4:Thermal shutdown:0=0K

BIT 14:CHIP#4:Synchronisation error detected:0=0K

BIT 15:CHIP#4:Watchdog error detected:0=0K

The global errcr state for the cutput group. Each bit stands for a different error
=0:Mo fault, =1:Fault

8.3.2.4.4.2 SPI communication status of every chip

With the command GSSDOGS you can read the current status of the internal SPI communication between the ARM

co-processor and the chips for the digital outputs. For every chip there is one bit in the answer.

DIGITAL OUTPUTS: SPI STATUS

GET SPI STATUS ASCI #GSSDOGS<CR>
DIGITAL OUTPUT GROUPS READ Result:
COMMAND |# -<5P|

ASCII

X

RX

Actual SPI status of digital output groups:00

digital output group #1, chip #1:.001-DO3
digital output group #2, chip #2,009-DOTS

Returns the actual SPI communication state of the corresponding output group as decimal number and as hexadecimal number,
SPIDOGSDec, SPIDOGSHex

The current SPI communication state of the digital output group:

Bit O: SPI communication state for digital cutput group #1 (=0:NO FAULT, =1.FAULT)

Bit 1: SPI communication state for digital output group #2 (=0:NO FAULT, =1:FAULT)

The command GSSDOGx will retrieve the SIP communication status of one chip.

GET 5PI STATUS Scil #GSSDOG<DOGRP> <CR>
DIGITAL QUTPUT GROUPx READ Result:

ASCII

COMMAND #GSSD0OG <DOGRP>: <SPIDOGXDec>, < SPIDOGxHex> <CR>
DOGRP 3

T <CR>

RX

| Actual 5Pl status of digital output group DOGB:0=NO FAULT

<DOGRP > 1=CHIPL.B=CHIPE

digital output group #1, chip #1:001-DO7
digital output group #2, chip #2:008-DON5
digital output group #3, chip #3.D016-D022
digital output group #4, chip #4:0023-DO30
digital output group #5, chip #5.0031-D038
digital output group #6, chip #6:D039-DO45
digital output group #7, chip #7:0046-D053
digital output group #8, chip #3:0054-DOE60

Returns the actual SPI communication state of the digital output group DOGRP as decimal number and as hexadecimal number,
[SPIDOGxDec, SPIDOGxHex

[The current SPI communication state of the digital output group DOGRP:

=0: SPI communication state for output group is OK (NO FAULT)

=1: 5Pl communication state for output group is FAULT

To check the SPI communication status with MODBUS use for coils:

SPI COMMUNICATION DIGITAL QUTPUTS

SPI COMMUNICATION 1%00184 77
CHIP #1: DO1-DO8 2x00184
1183

BIT
R/O

Actual SPI communication state:0=NO FAULT

The current manitoring state of the SPI communication for the digital cutput group
=0:No fault, =T:Fault

SPI COMMUNICATION 1x00185 nn
CHIP #2: DO9-DO1S 2x00185
184

BIT
R/O

Actual SPI communication state:.0=NO FAULT

The current manitoring state of the SPI communication for the digital cutput group
=0:Mo fault, =1:Fault

RESI Informatik & Automation GmbH RESI-T4/C4 |oT Controller

100 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

or for holding registers:
SPL COMMUNICATION DIGITAL OUTPUTS

SPI COMMUNICATION 3x00733 0,0x0000 UINT16
CHIP #1: DO1-DO7 1400733 B:00 00 R/O
732

Actual SPI communication state:0=NQO FAULT

The current monitoring state of the SPI communication for the digital cutput group

=0:No fault, =1:Fault

SPI COMMUNICATION 3x00734 0,0x0000 UINT16

CHIP #2: DOB-DO15 4x00734 B:00 00 R/O
733

Actual SPI communication state:0=NO FAULT
The current monitoring state of the SPI communication for the digital cutput group
=0iMo faulr, =1:Fault

You can read also the SPI communication within one register:

SPL COMMUNICATION DIGITAL QUTPUTS

[CHIP, #1:001-DO8

[CHIP, #2:008-DO15

SPI COMMUNICATION #BEZUG! 0,0x0000 UINT16
DIGITAL QUTPUTS B:00 00 R/O

Actual SPI communcation state of CHIP#1:0=0K
Actual SPI communcation state of CHIP#2:0=0K

The current monitoring state of the 5P communication for the digital cutput group
=0:No fault, =1:Fault

(Current SP1 communication state of all digital cutput groups
Bit x: =0:.CHIP x has no fault, =1.CHIP x 5P| Fault

8.3.2.4.43 Diagnostic status of every digital output

The chips return for every digital output the following diagnostic status:
m Detect open wire while DO=ON

Detect open wire while DO=OFF

Detect shortcut to power supply (VDD) while DO=OFF

Detect thermal overload for DOx

Detect current limit for DOx

In ASCII you can use the following commands to read out the current diagnostic status:

m Detect open wire while DO=0ON — use GDOOWFONS for all DOs or GDOOWFONXx for one specific DO

m Detect open wire while DO=0OFF — use GDOOWFOFFS for all DOs or GDOOWFOFFx for one specific DO

m Detect shortcut to power supply (VDD) while DO=OFF — use GDOSVDDS for all DOs or GDOSVDDx for one
specific DO

m Detect thermal overload for DOx — use GDOTOS for all DOs or GDOTOXx for one specific DO

m Detect current limit for DOx — use GDOCLS for all DOs or GDCLOx for one specific DO

As an example of the ASCII commands we list here the GDOTOS and GDOTOx commands. The rest of the

commands you will find in the command lists of your controller.
DIGITAL OUTPUTS. THERMAL OVERLOAD DETECTION

GET DIGITAL QUTPUTS Cll #GDOTOS<CR> ASCII
THERMAL OVERLOAD READ Result:
DETECTION COMMAND #GDOTOS: < StatusDOSDec», < StatusDOSHex> <CR>

X |#255IGDOT05<CR>
RX
Actual thermal overload detection status of digital outputs:

|DO1-DO15:000.0000.0000.0000 |
[Returns the actual state of the thermal overload detection for all digital cutputs as decimal numiber and as hexadecimal number.

[StatusDOSDec, StatusDOSHex

The current detection state of the digital outputs:

Bit O Thermal overload detected an DOT {=(0:NO, =1.YES)

Bit 1: Thermal overload detected on DO2 (=0:NC, =1.YES)

it 13: Thermal overload detected on DOM (=0NO, =TYES)
Bit 14: Thermal overload detected on DO1S (=0:NO, =1.YES)

(GET DIGITAL OUTPUT DOx ASCI #FGDOTO<DONR><CR> ASCII
THERMAL OVERLOAD READ Result
DETECTION COMMAND I& < e usDOxDecs «StatusD0OxHex> < CR>

DONR 2

X <CR>

RX

| Thermal overload detected on DO2:0=NO

<DONR=>: 1=D01.15=D0O15

[Returns the actual state of the thermal overload detection for digital cutput DOx as decimal numiber and as hexadecimal number.
[StatusDOxDec. StatusDOxHex

The current detection state for digital output DOx:

=(: digital output is OK

=1: FAULT detected on digital output

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 101 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

Again on the MODBUS side, we show as an example the coils and registers for the detect open wire while DO=ON
status, the other registers are found in our command lists:

DIGITAL QUTPUTS: OPEN WIRE DETECTION STATUS WHILE ON

(OPEN WIRE FAULT 100077 mwn BIT
WHILE ON DO1 2x00077 R/O
176
Actual detection state of an open wire fault
i 0=0K
[The current detection state of an open wire in the output state ON for the digital output DOx
=0:No fault, =1:Fault-open wire detected
(OPEN WIRE FAULT 1x00078 nn BIT
WHILE ON DC2 2x00078 R/O
.77
Actual detection state of an open wire fault
n state OM for DOZ.0=0K
(OPEN WIRE FAULT 1x00079 nn BIT
WHILE ON DC3 2x00079 R/O
.78

Actual detection state of an open wire fault
in state ON for DO3.0=0K
DIGITAL OUTPUTS: OPEN WIRE DETECTION. STATUS WHILE ON

(OPEN WIRE FAULT 3x00077 0,0x0000 UINT16
WHILE ON DO 1400077 B:00 00 R/O
176
Actual detection state of an open wire fault
i 0=0K
The current detection state of an open wire in the output state ON for the digital output DO
=(;No fault, =1:Fault-open wire detected
(OPEN WIRE FAULT 300078 0,0x0000 UINT16
WHILE ON DC2 4x00078 B:00 00 R/O
.77
Actual detection state of an open wire fault
n state OM for DOZ.0=0K
(OPEN WIRE FAULT 3x00079 0,0x0000 UINT16
WHILE ON DC3 4x00079 B:00 00 R/O
.78

Actual detection state of an open wire fault
in state ON for DO3:0=0K

or you read the compact status from holding registers:

(OPEN WIRE DETECTION STATE 310027 32512,0x7F00 UINT16
WHILE OFF 410027 B:7F 00 R/O
DOT7-DO32 110026

Actual state of open wire detection while OFF
for DO17.0=0FF

Actual state of open wire detection while OFF
DO18:0=0FF

Actual state of open wire detection while OFF
for DON9:0=0FF

Actual state of open wire detection while OFF
for DO20:0=0FF

Actual state of open wire detection while OFF
for DO21:0=0FF

Actual state of open wire detection while OFF
DO22:0=0FF

Actual state of open wire detection while OFF
for DO23.0=0FF

Actual state of open wire detection while OFF
DO24:0=0FF

Actual state of open wire detection while OFF
for DO25:1=0ON

Actual state of open wire detection while OFF
for DO26:1=0N

Actual state of open wire detection while OFF
for DO27:1=0N

Actual state of open wire detection while OFF
DO281=0N

Actual state of open wire detection while OFF
for DO23:1=0N

Actual state of open wire detection while OFF
DO301=0n

Actual state of open wire detection while OFF
for DO31:1=0ON

Actual state of open wire detection while OFF
for DO32:0=0FF

Actual diagnostic state for open wire detection while OFF for digital output DOx

Bir 0 =0:0utput DOTT Is OK, =1Fault-Open wire detected on DO17

Bit 1. =0:0utput DOIB is OK, =1:Fault-Open wire detected on DO1B

B 14: =0:Cutput DO31is OK, =TFault-Open wire detected on DO31

Bit 15: =0:0utput DO32 is OK, =1:Fault-Open wire detected on DO32

Similar ASCII commands and MODBUS coils & registers you will find for the other diagnostic informations in out
command & register list for every product.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 102 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

But before this status is updated you have to select for every individual output, which type of diagnostic you want to
enable. Therefore we offer the following commands:

Detect open wire while DO=ON — Enable this diagnostic with SDOEOWDONS or one individual output with

SDOEOWDONY, check the current enable status with GDOEOWDONS or for one DO with GDOEOWDONXx

Detect open wire while DO=0OFF — Enable this diagnostic with SDOEOWDOFFS or one individual output with

SDOEOWDOFFy, check the current enable status with GDOEOWDOFFS or for one DO with GDOEOWDOFFx

Detect shortcut to power supply (VDD) while DO=OFF — Enable this diagnostic with SDOESVDDS or one

individual output with SDOESVDDx, check the current enable status with GDOESVDDS or for one DO with

GDOESVDDx
]
]

Detect thermal overload for DOx — Is always enabled
Detect current limit for DOx — Is always enabled

As an example here the ASCII commands for enabling the shortcut to VDD diagnostic while DO=0OFF:

DIGITAL OUTPUTS: ENABLE SHORTCUT TO VDD DETECTION WHILE OFF
SET DIGITAL OUTPUTS ASCIl #SDOESVDDS: <ShortCutDOS> <CR> ASCII YES
ENABLE SHORTCUT TO VDD WRITE Result:
IDETECTION WHILE OFF COMMAND #OK<CR>
DO1 0:OFF
DO2 0:CFF
DO3 0:CFF
DO4 0:0FF
DO5 0:0FF
DO& 0:OFF
DO7 0:OFF
DO8 0:OFF
DO9 0:OFF
DO10 0:CFF
DOT1 0:CFF
DO12 0:CFF
DO13 0:OFF
DO14 0:CFF
DO15 0:CFF
IR 255,SDOESVDDS:0<CR>
RX
[Sets the shortcut to VDD detection mode for all digital outputs to the new mode ShortCutDOS. This enables the diagnostic of shortcut to VDD while the digital output is OFF.
The new state for all digital outputs
Bit O New maode for DO (=0:DISABLED, =1.ENABLED)
Bit 1: Mew mode for DO2 (=0:DSABLED, =1.ENABLED)
Bit 13- New mode for DO (=0rDISABLED, =TENABLED)
Bit 14: New made for DO15 (=0:DISABLED, =1ENABLED)
SET DIGITAL QUTPUT ASCI #SDOESVDD < DONR>:<ShortCutDOx> <CR> ASCII YES
ENABLE SHORTCUT TO VDD WRITE Result:
IDETECTION WHIWEOFF ICOMMAND #FOK<CR>
DONR 2
DOx 0:DISABLE
™ 255 SDOESVDD2:0<CR>
RX
<DONR>: 1=D01.15=D015
<ShortCutDOx>: 0=DISABLE. 1=EMABLE
Sets the shortcut to VDD mode for digital output DOx to the new mode ShortCutDOx. This enables the diagnostic of shortcut to VDD while the digital output is OFF,
The new mode of the digital output DOx:
=0: diagnostic mode for digital cutput is DISABLED
=1: diagnastic mode for digital cutput is ENABLED
GET DIGITAL OUTPUTS ASCIl #GDOESVDDS<CR> ASCII
ENABLE SHORT CUT TO VDD READ Result:
IDETECTION WHILE OFF JICOMMAND |4 < >, <ShortCutDOSHex> <CR>
X 255,GDOESVDDS <CR>
RX
Actual mode for shortcut to VDD diagnostic while OFF of digital outputs:
|DO1-DO15:000.0000.0000.0000 |
Returns the actual mode for shartcut to VDD diagnastic while digital output is OFF as decimal number and as hexadecimal number
[ShonCutDOSDec, ShortCutDOSHex
The current mode far shortcut diagnastic while OFF of the digital outputs:
Bit Or Open wire diagnostic mode of DO1 (=0:DISABLED, =T:ENABLED)
Bit 1. Open wire diagnostic mode of DO2 (=0-DISABLED, =1.ENABLED)
Bit 13- Open wire diagnostic mode of DO4 (=0:DISABLED, =1EMABLED)
Bit 14: Open wire diagnostic mode of DO15 (=0:DISABLED, =T:ENABLED)
GET DIGITAL QUTPUT ASCI #GDOESVDD<DONR=<CR> ASCII
ENABLE SHORT CUT TO VDD READ Result:
IDETECTION WHILE OFF | 1#GDOESYDD < DONR > <ShortCutDOxDec> < Short CutDOxHex> < CR>
DONR 2
X 255,GDOESYDD2<CR>
RX
Actual shortcut to VDD diagnostic mode while OFF of digital output DO2:0=DISABLED

<DOMR>: 1=D01.15=D015

ShortCutDOxDec, ShortCutDOxHex

The current diagnostic mode of the digital output DOx:

=0 open wire diagnostic mode for digital cutput is DISABLED
=1: open wire diagnostic mode for digital output is ENABLED

Returns the actual short cut to VDD diagnostic made while OFF of the digital output DOx as decimal number and as hexadecdimal number.

For the other two enable commands you will find the ASCII syntax in the command & register lists of your product.

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

103 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

With MODBUS you can enable the same diagnostic features with coils or registers. You can enable/disable every
single DO with this registers:

ENABLE OPEN WIRE 1x00032 wmn 1 BIT NO
DETECTION ON DO1 2x00032 RAW
L3
Actual setup of open wire detection for state ON ENTER NEW SETUP MODE (0 or 1)
of DO1.0=0FF
Enables/disabled detection of an open wire in DO state ON for the digital output DOx
=0:Cpen wire detection is OFF, =1 Open wire detection is ON
[Writing on this register changes the state of the open wire detection for this output
ENABLE OPEN WIRE 1%00033 m 1 BIT NO
DETECTION ON DO2 2x00033 RAW
.32
Actual setup of open wire detection for state ON ENTER NEW SETUP MODE (D or 1)
of DO2.0=0FF
ENABLE OPEN WIRE 1x00034 " 1 BIT NO
DETECTION ON DO3 2x00034 R/W
133
Actual setup of open wire detection for state ON ENTER NEW SETUP MODE (D or 1)
of DO3.0=0FF
or
ENABLE OPEN WIRE 3x00032 1,0x0001 1 UINT16 NO
DETECTION ON DO1 4x00032 B:00 R/W
L3
Actual setup of open wire detection for state ON ENTER NEW SETUP MODE (0 or 1)
of DO11=0N

Enables/disabled detection of an open wire in DO state ON for the digital output DOx
=0:Cpen wire detection is OFF, =1 Open wire detection is ON

[Writing on this register changes the state of the open wire detection for this output

EMNABLE OPEN WIRE 3x00033 1,0x0001 1 UINT1E NO
DETECTION ON DO2 4x00033 B:00 01 R/W
132
Actual setup of open wire detection for state ON ENTER NEW SETUP MODE (0 or 1)
of DO2:1=0N
ENABLE OPEN WIRE 3x00034 1,0x0001 1 UINT1E NO
DETECTION ON DO3 4x00034 B:00 01 R/W
133
Actual setup of open wire detection for state ON ENTER NEW SETUP MODE (D or 1)
of DO3:1=0N

For using one compact register use:

DIGITAL OUTPUTS:ENABLE OPEN WIRE DETECTION. WHILE ON

ENABLE OPEN WIRE DETECTION 3x10004 £5535,0xFFFF OxTFFF UINT16 NO
WHILE ON DO1-DO15 14x10004 B:FF FF RAN
110003

Actual setup of open wire detection while ON 1

1= ED
ctual setup of open wire detection while ON 1
r DO2:1=ENABLED
ctual setup of open wire detection while ON 1
r DO3:1=ENABLED
ctual setup of open wire detection while ON 1
or DO4:1=ENABLED
ctual setup of open wire detection while ON 1
r DOS:1=ENABLED
ctual setup of open wire detection while ON 1
1=ENABLED
ctual setup of open wire detection while ON 1
r DO7:1=ENABLED
ctual setup of open wire detection while ON 1
r I=ENABLED
ctual setup of open wire detection while ON 1
r [1=ENABLED

Actual setup of open wire detection while ON 1

10:1= ED
Actual setup of open wire detection while ON 1
for DO11.1=ENABLED
Actual setup of open wire detection while ON 1

Actual setup of open wire detection while ON 1
for DO13:1=ENABLED
Actual setup of open wire detection while ON 1
fi 14:1= ED

Actual setup of open wire detection while ON 1
for DO15:1=ENABLED

Actual setup state for open wire detection while ON for digital output DOx
Bt 0 =0:0pen wire detection for DO is DISABLED, =1:0pen wire detection for DO s ENABLED
Bit 1. =0:0pen wire detection for DO2 is DISABLED, =1:0pen wire detection for DO2 is ENABLED

Bit 13: =0:0pen wire detection for D04 is DISABLED, =1:0pen wire detection for D014 is ENABLED
Bit 14: =(:Open wire detection for DO15 is DISABLED, =1:0pen wire detection for DO15 is ENABLED

(Write an this register sets for all digital cutputs a new setup state

For the two other diagnostic features the registers are in the command & register lists for the individual product.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 104 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

8.3.24.4.4 Configuration of diagnostic status for init & watchdog

You can set a status for the three diagnostic features, which will be used after power on or after a communication
watchdog. Please refer to INIT VALUES & COMMUNICATION WATCHDOG for 10s, how this functionality works.

Use the following commands to configure this features:

m Detect open wire while DO=ON — Enable the configuration of this diagnostic with SCDOEOWDONS, check
the current configuration with GCDOEOWDONS

m Detect open wire while DO=OFF — Enable the configuration of this diagnostic with SCDOEOWDOFFS, check
the current configuration with GCDOEOWDOFFS

m Detect shortcut to power supply (VDD) while DO=OFF — Enable the configuration of this diagnostic with
SCDOESVDDS, check the current configuration with GCDOESVDDS

m Detect thermal overload for DOx — Is always enabled

m Detect current limit for DOx — Is always enabled

Here are the ASCIl commands for the configuration of the diagnostic function detect shortcut to power supply

(VDD) while DO=0OFF:
DIGITAL OUTPUTS: INIT & WATCHDOG ENABLE SHORTCUT TO VDD DETECTION WHILE OFF

SET CONFIG DIGITAL QUTPUTS ASCI #SCDOESVDDS: <ShortCutDOS> <CR> ASCII YES
ENABLE SHORTCUT TO VDD IWRITE Result:
DETECTION WHILE QFF COMMAND #OK<CR>

DO1 1:.ENABLE

Do2 1:ENABLE

DO3 1:ENABLE

DO4 1:ENABLE

DOS 1:ENABLE

DO6 1:ENABLE

DO7 1:ENABLE

DO8 1.ENABLE

D09 1:ENABLE

DO10 1:ENABLE

DO1 :-ENABLE

DO12 1:ENABLE

DO13 1.ENABLE

DO4 1:ENABLE

DO15 1:ENABLE

[TX [#255,SCDOESVDDS:32767 <CR>

RX
[Sets the shortcut to VDD detection mode for all digital outputs 1o the new mode ShortCutDOS for init & watchdog.
This enables the diagnostic of shortcut 1o VDD while the digital output is OFF

This state is used after power on and after a communication watchdog timeout, if a watchdog time is configured
The new state for all digital outputs

Bit O New mode for DO1 (=0:DISABLED, =1ENABLED)

Bit 1: Mew mode for DOZ (=0:DISABLED, =1ENABLED)

é t13: New mode for DO (=0:DISABLED, =1ENABLED)
Bit 14: New mode for DO15 (=0:DISABLED, =TENABLED)

(GET CONFIG DIGITAL OUTPUTS ASCII #GCDOESVDDS<CR> ASCII
ENABLE SHORT CUT TO VDD READ Result:
DETECTION WHILE OFF COMMAND #GCDOESDDS: < ShortCutDOSDec >, < ShotCutDOSHex > <CR>

[TX [#255,GCDOESVDDS <CR>

RX —
Init & watchdog configuration for shortcut to VDD diagnostic while OFF of digital outputs:

|DO1-DO15:000.0000.0000.0000 |

Returns the actual mode for shortcut to VDO diagnostic while digital output is OFF as decimal number and as hexadecimal number
[This values are used after power on of the module an after a watchdog event

[ShonCutDOSDec, ShortCutDOSHex

The current mode for shortcut diagnostic while OFF of the digital outputs:

Bit Or Open wire diagnostic mode of DOT {=0-DISABLED, =1ENABLED)

Bit 1: Open wire diagnostic mode of DO2 {=0.DISABLED, =1ENABLED)

Bit 13- Open wire diagnostic mode of DO4 (=0:DISABLED, =1EMABLED)

Bit 14: Open wire diagnostic mode of DO15 (=(0:DISABLED, =1:ENABLED)

The configuration process for the other diagnostic functionality in case of power on or IO communication watchdog
is similar and found in our command & register list for every product.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 105 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

You can define the same bits with MODBUS using the following registers:
P! DETECTION WHILE ON

INTIAL & WATCHDOG SETUP 3x59002 nn Ox7FFF UINT16 NO
ENABLE OPEN WIRE DETECTION 4x59002 RAW
WHILE ON DO1-DO1S 159001

Initial setup of open wire detection while ON 1

for DO1.0=DISABLED
Initial setup of open wire detection while ON 1
for DO2:0=DISABLED
Initial setup of open wire detection while ON 1
for DO3:0=DISABLED
Initial setup of open wire detection while ON 1
for DO4:0=DISABLED
Initial setup of apen wire detection while ON 1
Ifor DOS:0=DISABLED
Initial setup of open wire detection while ON 1
for DO6:0=DISABLED
Initial setup of open wire detection while ON 1
for DO7.0=DISABLED
Initial setup of open wire detection while ON 1
for DO8:0=DISABLED
Initial setup of open wire detection while ON 1
for DO%.0=DISABLED
Initial setup of open wire detection while ON 1
for DC10:0=DISABLED
Initial setup of open wire detection while ON 1
for DO11.0=DISABLED
Initial setup of open wire detection while ON 1
for DO12:0=DISABLED
Initial setup of open wire detection while ON 1
for DC13:0=DISABLED
Initial setup of apen wire detection while ON 1
for DO14:0=DISABLED
Initial setup of open wire detection while ON 1
for DC15:0=DISABLED
[Current FRAM setting for intial and watchdog state for open wire detection while ON for digital output DOx, This state is used after power on and after a communcation watchdog timeout, f a watchdog time is confgured
Bit 0: =0:0pen wire detection for DO is DISABLED, =10pen wire detection for DOH is ENABLED

Bit 1: =0:0pen wire detection for DOZ is DISABLED, =1.0pen wire detection for DOZ is ENABLED

éit 13: =0:0pen wire detection for DO is DISABLED, =1:0pen wire detection for DO4 is ENABLED
Bit 14: =(0:0pen wire detection for DO15 is DISABLED, =1:0pen wire detection for DO15 is ENABLED

[Write on this register sets all digital outputs to a new state for module restart and watchdog function, The state is saved in FRAM

DIGITAL OUTPUTS:ENABLE OPEN WIRE DETECTION WHILE OFF

INTIAL & WATCHDOG SETUP 3x59003 nn Ox7FFF UINT16 NO
ENABLE OPEN WIRE DETECTION 4x59003 R/W
WHILE OFF DO1-DO1S 159002
Initial setup of open wire detection while OFF 1
r DO1:0=DISABLED
Initial setup of open wire detection while OFF 1

r I ED
Initial setup of open wire detection while OFF 1
for DO3:0=DISABLED

Initial setup of open wire detection while OFF 1

r =
Initial setup of open wire detection while OFF 1
for DO7:0=DISABLED

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 106 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Initial setup of open wire detection while OFF 1
for DO8:0=DISABLED
Initial setup of open wire detection while OFF 1
for DO9:0=DISABLED
Initial setup of open wire detection while OFF 1
for DO10:0=DISABLED
Initial setup of open wire detection while OFF 1
for DO11.0=DISABLED
Initial setup of open wire detection while OFF 1
for DO12:0=DISABLED
Initial setup of open wire detection while OFF 1
for DO13:0=DISABLED
Initial setup of open wire detection while OFF 1
for DO14:0=DISABLED
Initial setup of open wire detection while OFF 1
for DO15:0=DISABLED
[Current FRAM setting for intial and watchdog state for open wire detection while OFF for digital output DOwx. This state is used after power on and after a communcation watchdog timeout, if a watchdeq time is confgured
Bit O: =0:0pen wire detection for DOV is DISABLED, =1:.0pen wire detection for DO is ENABLED

Bit 1: =0:0pen wire detection for DO2 is DISABLED, =1:0pen wire detection for DO2 is ENABLED

E-T 13: =0:0pen wire detection for DO is ISABLED, =1:0pen wire detection for DO14 is ENABLED
Bit 14: =0:0pen wire detection for DO15 is DISABLED, =1:0pen wire detection for DO15 is ENABLED

[Write on this register sets all digital outputs 10 a new state for module restart and watchdog function, The state is saved in FRAM

DIGITAL OUTPUTS:ENABLE SHORTCUT. DETECTION WHILE OFF

INTIAL & WATCHDOG SETUP 3x59004 nn Ox7FFF UINT16 NO
ENABLE SHORTCUT TO VDD 14x59004 R/W
DETECTION 1:59003
WHILE OFF DO1-DO1S
Initial setup of shortcut to VDD detection while OFF 1
for DO1:0=CISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO2:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO3:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO4.0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO5:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO6.0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO7:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DOB:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1

for DO9:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO10:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO1.0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DC12:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO13:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO14:0=DISABLED
Initial setup of shortcut to VDD detection while OFF 1
for DO15:0=DISABLED
[Current FRAM setting for intial and watchdog state for shortcut to VDD detection while OFF for digital output DOx. This state is used after power on and after a communcation watchdog timeout, if a watchdog time is confgured
Bit O =0:Shortcut detection for DO1is DISABLED, =1:Shartcut detection for DO1 is ENABLED

Bit 1: =0:Shortcut detection for DOZ is DISABLED, =1:Shortcut detection for DO2 is ENABLED

éit 13: =0:5hortcut detection for DO14 is DISABLED, =1:5hortcut detection for DO14 is ENABLED
Bit 14: =(:Shortcut detection for DO15 is DISABLED, =T:Shortcut detection for DO15 is ENABLED

[Write on this register sets all digital outputs to 3 new state for module restart and watchdog function. The state is saved in FRAM

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 107 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

83.3 Relay outputs £30V=, £250V~, <6A, AgSnO;

This output type supports relay outputs for maximum 30Vdc or 250Vac voltage and max. 6A current. All relay are
normally open relay with form A contacts. As contact material we use only relays with AgSnO..

Figure: Our RESI-C4-A-32DI24RO16AIOX IoT controller with 24 relay outputs

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 108 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.3.1 Technical specification

The realy outputs meets the following technical specification

RELAY OUTPUTS

Update rate

As fast as possible

Relay type

Mono stable, Form A

FormA

{

l

Maximum voltage 250Vac

Maximum current 6A

Mechanical lifetime 10° cycles of operation

Contact material AgSnO;

Max. switching power ACT 1500VA

Max. switching power AC15 (230V~) 300VA

Max. switching power AC3 185W

Max. switching power DC1 6A@30V=
0.2A@110V=
0.12A@220V=

Insulation

Creep-age and clearance distance 8mm

Cable connection

Power supply: via one 2-pin plug in terminal block

Terminal type

RM3.5

Galvanic insulation

Yes, with the relay

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

109 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.3.2 Additional terminals or functionalities

Depending on the module the relay outputs are grouped in 12 or 24 relay outputs on one terminal block

RELAY OUTPUTS
Relay output x Terminal type: RM3.5
ROx:+: Contact A of Form A relay
ROx:-: Contact B of Form A relay
1.n: Relay output 1-n
O=Relay is open
1=Relay is closed
Pin layout 12/24 Form A relay outputs
Twelve/twenty-four 2 pin plug-in terminal block
Pin 1: 1: Relay output #1: Contact A
Pin 2: 2: Relay output #1: Contact B
Pin 1: 1: Relay output #12/24: Contact A
Pin 2: 2: Relay output #12/24: Contact B
INFO If at least one of the relay outputs is activated (ON), this LED is ON.
If none of the relay outputs are activated (OFF), this LED is OFF.
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 110von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

83.3.3 Cabling of the relay outputs

DIGITAL INPUTS

DIGITAL INPUTS.

@ wom

|||||||||

Ethernet

HDMI

USB 2.0
#1

USB 2.0
#2

Figure: Example of cabling of the relay outputs to a RESI-C4-A-32DI24RO16AIOX |oT controller

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

1MTvon 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.34 Using the relay outputs with ASCII+MODBUS
8.3.3.4.1 Update all digital inputs & relay outputs

In ASCII there is a special command to update all relay outputs and read back the actual state of all inputs with one
command:

UPDATE DIGITAL ASCI #UDIOS: <OutAlIDOS> <CR> ASCII YES
INPUTS AND QUTPUTS 'WRITE Result:

COMMAND #UDIOS: <InAIDISDec >, <InAllDISHex> <CR>

DO 0:0FF

Doz 0:0OFF

Do3 0:0FF

DO4 0:OFF

DOs 0:0OFF

DO6 0:CFF

DO7 0:0FF

DO8 0:.0FF

DO3% 0:0FF

DOo10 0:0OFF

DO 0:OFF

DO12 0:OFF

X 255,UDIOS:0<CR>

RX

Actual status of digital inputs:1000.0000.0000.0000.0000,0000.0000.0000

Sets all digital outputs to the new state OutAlIDOS and gives back the current status of all digital inputs INAIDIS as decimal and hexadecimal value
(OutAlDOS: The new state for all digital cutputs

Bit O State of DO1 (=0:0FF, =1.0N)

Bit 1: State of DOZ (=0:0FF, =1.0N)

Bit 2: State of DO3 (=0:OFF, =1:0M)

Bt State of DOTO (=0-OFF, =1ON)
Bit 10: State of DO11 (=0:0FF, =1:0M)
Bit 11: State of DO1Z (=0:0FF, =1:.0N)

InANIDIS: The current state for all digital nputs
Bit O State of DI (=0:0FF, =1:0N)
Bit 1: State of DI2 (=0:0FF, =1:0N)
Bit 2: State of DI3 (=0:0FF, =1:0N)

é-t 29: State of D130 (=0.0FF, =1.0N)
Bit 30: State of D131 (=0:0FF, =T:0N)
Bit 31: State of DI32 {=0:0FF, =T:.0N)

83342 Current status of relay outputs

In ASCII you can read the current status of the digital outputs with the commands GDOS or GDOx:

GET DIGITAL OUTPUTS ASCIl #GDOS<CR> ASCII
READ Result:
COMMAND : > <DOSHex> <CR>
™
RX

Actual status of digital outputs:0000.0000.0000

Returns the actual state of the digital outputs as decimal number and as hexadecimal number,
DOSDec, DOSHex

[The current state of the digital outputs:

Bit 0: State of DO1 (=0:0FF, =1:.ON)

Bit 1: State of DOZ (=0:0FF, =1:0N)

Bit 2: State of DO3 (=C:OFF, =1.0M)

Bit 9. State of DOT0 (=0:0FF, =1ON)
Bit 10: State of DO (=0:OFF, =1:0MN)
Bit 11: State of D012 (=0:0FF, =1.0M)

(GET DIGITAL QUTPUT DOx ASCI #GDO<DONR><CR> ASCII
READ Result:
COMMAND #GD0 <DONR>-<DOxDec> <DOxHex> <CR>
DONR 2
X 255,GD0O2<CR>
RX
Actual status of digital output DO2:0=0FF

Returns the actual state of the digital output DOx as decimal number and as hexadecimal number.
DOwDec, DOxHex

[The current state of the digital output DOx:

=0 relay output is OFF

=1: relay output is ON

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 112 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

For writing to a digital output in ASCII use the command SDOS or SDOx:

<DONR>: 1=001.12=D012

SET DIGITAL OUTPUTS ASCI #SDOS: <OutAlIDOS > <CR> ASCII YES
'WRITE Result:
COMMAND #OK<CR>
Dot 0:OFF
DO? 0.0FF
DO3 0:OFF
DO4 0:OFF
DO5 0:OFF
DO6 0:OFF
DO7 0:OFF
DOo8 0:OFF
DO9 0:OFF
DO10 0:OFF
DO 0:OFF
DO12 0:OFF
TX 255,5D05:0<CR>
RX
[Sets all digital outputs to the new state OutAIDOS
The new state for all digital outputs
Bit O State of DO (=0:0FF, =1.0N)
Bit 1: State of DOZ (=0.0FF, =T.0N)
Bit 2: State of DO3 (=0.0FF, =1.0N)
Bit 9 State of DOI0 (=0:0FF, =1.0N)
Bit 10: State of DO (=0:0FF, =T1.ON)
Bit 11: State of DON2 (=0:0FF, =1.0N)
SET DIGITAL QUTPUT DOx ASCI #SDO<DONR>:<Cut> <CR> ASCI NO
WRITE Result:
COMMAND #OK<CR>
DONR 2
DOx 0:OFF
X 255,5D02:0<CR>
RX

[Sets the new state for digital output DOx. The state is defined with <Out>
(Out

The new state of the digital output DOx

=0 digital output is OFF

=1: digital cutput is ON

In MODBUS you have many coils and registers which will show the actual digital output state or with which you can

set a new output state:

Here are registers for coils or registers (Every output as one bit):

STATUS DIGITAL QUTPUTS

DO 1x00017 m 1 BIT NO
2x00017 RAW
116
Actual state of DO1.0=0FF ENTER NEW STATE {0 or 1)
[Current state of the digital output DOx
=0.00 is OFF, =1.D0 is OM
Writing on this register changes the state of the digital output
DO2 1x00018 7 0 BIT NO
2x00018 R/W
117
Actual state of DO2:0=0FF ENTER NEW STATE (0 or 1)
The same reading and writing can be done by holding registers:
STATUS DIGITAL QUTPUTS
nle]] 3x00017 0,0x0000 1 UINT16 NO
4x00017 B:00 00 RAW
L16
Actual state of DO1.0=0FF ENTER NEW STATE {0 or 1)
[Current state of the digital output DOx
=0.00 is OFF, =1.D0 is OM
Writing on this register changes the state of the digital output
DO2 3x00018 0,0x0000 0 UINT16 NO
4x00018 8:00 00 R/W
117
Actual state of DO2:0=0FF ENTER NEW STATE (0 or 1)
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 113 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can also read and write to all digital outputs together:

STATUS OF DIGITAL OUTPUTS
STATUS OF ALL DOS 3x10004 0,0x0000 OxOFFF UINT16 NO
DO1-DO12 110004 B:00 00 R/W
110003
Actual state of DO1.0=0FF 1
Actual state of DO2:0=0FF 1
Actual state of DO3:0=0FF 1
Actual state of DO4:0=0FF 1
Actual state of DO5:0=0FF 1
Actual state of DO6:0=0FF 1
Actual state of DO7:0=0FF 1
Actual state of DO8:0=0FF 1
Actual state of DO9:0=0FF 1
Actual state of DO10:0=0FF 1
_ Actual state of DO11:0=0FF 1
| |Actual state of DO12:0=0FF I | |
Actual state of all digital outputs
Bit 0: 0001 is OFF, <1001 is ON
Bit 1: =0:D02 is OFF, =1.D02 is ON
Bit 10 =0:DO is OFF, =TDOT is ON

Bit 11: =0:0:0N12 is OFF, =1D0A2 is ON

Write an this register sets all digital outputs 1o a new state

83343 Pulsing the relay outputs

A special ASCIl command generates a one time pulse on a digital output:

DIGITAL OUTPUTS: PULSE OUTPUT

PULSE DOx ASCI #PDO<DONR>:<Time><CR> ASCI YES
'WRITE Result:
COMMAND #OK<CR>
DONR 2
TIME 200
X iZﬁSIPDOZ:Zooc CR>
RX

<DONR>: 1=D01.12=D012

<Time>; 0,65535*100ms

[This command switches the digital output DCx on for the pulse duration <PulseTimeln100ms>*100ms.
PulseTimeln100ms: A duration in 100ms units
The corresponding digital output is switched on for this time period

GET PULSE TIMER DOx Cll #GPT<DONR=><CR> ASCI
READ Result:
COMMAND #GPT. <TimeDec> <TimeHex> <CR>
DONR 2

1R 255,GPT2<CR>
RX —
| Actual pulse time for DO2:19,8s

<DONR>: 1=DO1.12-D012

[Returns the remaining timer value of the pulse for digital output DOx in ms.
PulseTimelinhM5Dec, PulseTimelnMSHex
The remaining time of the pulse in Milliseconds

But you can also initiate this digital output pulse with this MODBUS registers:
PULSE TIME FOR DIGITAL OUTPUTS

PULSE TIME DO1 3x20001 0,0x0000 200 20,0 UINT16 YES
14x20001 B:00 00 RAW
1:20000

(Generate a pulse on digital output x in 100ms units (0,1 to 6553,5 Seconds selectable)
if you write onto this register, the digital cutput will be switched on for the desired time in 100ms units.

PULSE TIME DD2 3x20002 0,0x0000 300 30,0 UINT6 NO
4x20002 B:00 0O R/W
1.20001

PULSE TIME DO3 3x20003 0,0x0000 400 40,0 UINTI6 NO
14x20003 B:00 00 R/W
120002

PULSE TIME DO4 3x20004 0,0x0000 500 50,0 UINT16 NO
4x20004 B:00 00 R/W
1. 20003

The remaining time for the current pulse can be read with this registers:
PULSE STATUS FOR DIGITAL OUTPUTS

PULSE TIMER DO1 321001 0,0x00000000 UINT32
421001 B:00 00 00 0O R/O
1:21000
0,0 seconds
Remaining time of the pulse on digital autput x in Milliseconds.
PULSE TIMER DO2 321003 0,0x00000000 UINT32
4x21003 B:00 00 00 00 R/O
21002
0.0 seconds
PULSE TIMER DO3 3x21005 0,0x00000000 UINT32
4x21005 B:00 00 00 0O R/O
21004
0,0 seconds
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 14 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

PULSE STATUS FOR DIGITAL OUTPUTS
PULSE TIMER DO1 3x21031 0,0x00000000 UINT32R
14x21031 B:00 00 00 00 R/O
1:21030
0,0 seconds
Remaining time of the pulse on digital output x in Millseconds.
PULSE TIMER DO2 3x21033 0,0x00000000 UINT32R
14x21033 B:00 00 00 00 R/O
1.21032
0,0 seconds
RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 115 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

83.4 Universal analog inputs & outputs 0-10V, 0-20mA, RTD

Our loT controller with universal analog inputs and output offer versatile use of analog signals in the field. Every
analog input or output can be configured with software to its function. You can choose between the following
analog 10 types:

m UNUSED: Analog IO is not used in your application

m ANALOG INPUT 0-10V or 2-10V

m ANALOG INPUT 0-20mA or 4-20mA loop powered

m ANALOG INPUT 0-20mA or 4-20mA external powered

ANALOG OUTPUT 0-10V or 2-10V
ANALOG OUTPUT 0-20mA or 4-20mA

RESISTOR INPUT ohm measurement 0-TMOhm
TEMPERATURE INPUT for PT100 sensor
TEMPERATURE INPUT for PT1000 sensor
TEMPERATURE INPUT for NIT000-DIN43760 sensor

DIGITAL INPUT for logic input 24Vdc
m DIGITAL INPUT loop powered

Figure: Our RESI-C4-A-16AIOX loT controller with 16 universal analog inputs & outputs

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 116 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.1

Technical specification

The analog inputs and outputs meet the following technical specification

ANALOG INPUTS/OUTPUTS

VOLTAGE INPUT

Input range 0-10v
Resolution 16 bit

Accuracy max. +0.04V
CURRENT INPUT

Input range 0-25mA
Resolution 16 bit

Accuracy max. £0.125mA

VOLTAGE OUTPUT

Output range 0-11v

Resolution 13 bit

Accuracy max. +0.044V
CURRENT OUTPUT

Output range 0-25mA
Resolution 13 bit

Accuracy max. £0.1375mA

RESISTOR (RTD) INPUT

Input range 0-IMOhm

Resolution 16 bit

Accuracy Range Accuracy
0-80Q +0.5%+0.5Q)
80-2000 +0.3%
200-1kQ +0.2%
1k-10kQ +0.2%
10k-20kQ2 +0.3%
20k-100kO) +0.8%
100k-200kQ +1.0%
200k-TMQ +8%

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

117 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

TEMPERATURE INPUT

for 2 wire PT100, PT1000, NI1000-DIN43760 sensors with internal linearisation

Sensor Accuracy

Sensor type PT100 +0.3%
PT1000 +0.2%
NI1000-DIN43760 +0.2%

DIGITAL INPUT Logic input

Input range <40V, 1,8mA

Input Threshold 12V="hysteresis 11.80-12.00V

DIGITAL INPUT Loop powered

Input current if contact is closed 4mA

Terminal type RM3.5

Galvanic insulation All grounds of all analog inputs and outputs are internally tied
together.

The complete analog input & output block is galvanically isolated
from the rest of the loT controller

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 118 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.2 Additional terminals or functionalities

UNIVERSAL ANALOG INPUTS & OUTPUTS

|O groups Terminal type: RM3.5
N+: Signal + for analog input or output N
N-: Signal — or ground for analog input or output N

Pin layout 4 universal analog inputs or outputs
One to four 8 pin plug-in terminal blocks
Pin 1: 1+,5+,9+,13+: Signal + for Al#1,5,9 or 13
Pin 2: 1-,5-,9-,13-: Signal — or ground for Al#1,5,9 or 13
Pin 1: 4+,8+,12+,16+: Signal + for Al#4,8,12 or 16
Pin 2: 4-,8-1,12-,16-: Signal — or ground for Al#4,8,12 or 16

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 119 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.3 Cabling of the universal analog inputs or outputs

Ethernet
USB 2.0 USB 2.0

#1 #2

HDMI

Figure: Example of cabling of the universal analog inputs or outputs to a RESI-C4-A-16AIOX loT controller

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 120 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

ANALOG INPUT
0-20mA/4-20mA
External powered mode

ANALOG IN/OUTPUTS 1.4

1+[1-|2+[2- |3+ [3 |4+] 4

ANALOG INPUT
0-20mA/4-20mA
Loop powered mode

ANALOG IN/OUTPUTS 1.4
1+ 1- |2+ 2- | 3+ | 3- |4+ | 4-

CURRENT
Source Load
0/4-20mA
GROUND
GROUND
ANALOG INPUT ANALOG GROUND
0-10Vv/2-10V All analog grounds are internally

[anaLos NouTPUTS 1.4]

| ANALOG IN/OUTPUTS 1.4

tied together!

This affects to all AIOX inputs!
But this analog ground is
galvanically isolated from the

l0/4-20mA AI

VOLTAGE M- of the module!
Source
0/2-10V
GROUND
GROUND
ANALOG OUTPUT ANALOG OUTPUT
0-20mA/4-20mA 0-10V/2-10V

ANALOG IN/OUTPUTS 1.4

l0/4-20mA

ANALOG IN/OUTPUTS 1.4

lO/2-10V AI

lO/Z-WV

eg. e.g.
VALVE GROUND VALVE GROUND
0/2-10V 0/2-10V
input input
Figure: Wiring of the different analog input and output signals and types
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 127von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

DIGITALINPUT DIGITALINPUT
§4O\/' 1.8mA | AnaLOG INOUTPUTS 1.4 | LOOp powered | ANALOG INIOUTPUTS 1.4
Threshold 12V= " 4mA ,
Logic
POWER
SUPPLY
24v=
GROUND GROUND
RESISTOR INPUT RESISTOR INPUT
0-MQ PT100, PT1000, NI1000-DIN43760
ANALOG IN/OUTPUTS 1.4 I | ANALOG IN/OUTPUTS 1.4
14| 1- |2+ | 2- | 3+ 3- |4+ | 4~ lnternal ||near|sat|on 14| 1- |2+ 2- | 3+ 3- |4+ 4-
Output: °C,°F or °K
Resistor
Measurement Range Accuracy RTD
0-80Q £0.5%+0.5Q) Sensor
80-200Q +0.3% 2 wire
200-1kQ) +0.2%
1k-10kQ +0.2%
10k-20kQ2 +0.3% Sensor type Accuracy
20k-100kQ +0.8% GROUND PT100 +0.3% GROUND
100k-200kQ +1.0% PT1000 +0.2%
200k-MQ +8% NI1000-DIN43760 +0.2%

Figure: Wiring of the different digital and temperature input types

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

122 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.44 Using the universal analog inputs & outputs with ASCII+MODBUS

8.3.4.41 Communication with co-processor

The universal analog inputs and outputs (AIOX) are driven be an additional ARM processor. This processor talks to
the ARM co-processor via an internal serial interface. The two processors exchange the current status of all analog
inputs and outputs every 100ms. So the effective update rate on the AIOX is 10 samples per second.

83442 Howto set the 10 type of the AIOX

In ASCII you can set the 10 type for every AIOX with the commands SIOTYPS or SIOTYPx. This command will also
save the actual 10 type for every AIOX in the ferromagnetic RAM. After a restart of the loT controller the last 10 type
setting is automatically used for all AIOX inputs and outputs.

AIOIX CONFIGURATION
SET 10 TYPES ASCI #SIOTYPS: <|OTypl>,<|0Typ2>, <I0Typ3>,<I0Typd>, <IOTyp5>, <IOTyp6>, <|OTyp7 >, <ICTyp8>,<I0T ASCI YES
'WRITE yp9>, <I0Typl0>,<I0Typll>, <IOTypl2 >, <IOTypl3>, <IOTypld>, <|OTyp15>, <I0Typ16> <CR>
ICOMMAND Result:
#OK<CR.
I0Typl VO[0-10V]
10Typ2 VO[0-10V]
I0Typ3 VO[0-10V]
|0Typ4 VO[0-10V]
IOTypS VO[0-10V]
10Typ6 VO[0-10V]
1OTyp7 VO[0-10V]
IOTyp8 VO[0-10V]
1O0Typ9 VO[0-10V]
I0Typ10 VO[0-10V]
I0Typ1l VO[D-10V]
I0Typ12 VO[0-10V]
I0Typ13 VO[0-10V]
10Typ14 (VO[0-10V]
I0Typ15 VO[0-10V]
10Typ16 VO[0-10V]
X 255,SI0TYPS:VO[0-10V], VO[0-10V],VO[0-10V], VO[0-10V], VO [0-10V], VO[0-10V], VO[0-10V],VO[0-
VO[0- . - . il -10VLVOI0-10V] <CR>
RX

This command defines for all 16 universal 105 a new type of 10,

IOTypx stands for the new type:

UL Urused — high impedance

VI[0-10V]: VOLTAGE INPUT for O to 10V Signals

VI[2-10V]: VOLTAGE INPUT for 2 to 10V Signals

VO[0-10V]: VOLTAGE QUTPUT for O 1o 10V Signals

WO[2-10V]: VOLTAGE OUTPUT for 2 to 10V Signals]

CI[0-20mA;LF]: CURRENT INPUT for 0 to 20mA Signals - loop powered
CI[4-20mALP): CURRENT INPUT for 4 to 20maA Signals = loop powered
(CI[0-20mAER]: CURRENT INPUT for 0 to 20mi Signals - external powered
CI[4-20mAEP]: CURRENT INPUT for 4 to 20mA Signals - external powered
(CO[0-20mA]: CURRENT QUTPUT for 0 to 20mA Signaks

(COf4-20mA] CURRENT OUTPUT for 4 to 20mA Signals

[RTCH[OHM]: RTD SENSOR INPUTfor Ohm measurement between 0 and IMOhm
D24V L]: DIGITAL INPUT for 24Vdc - logic, threshold 12V

D124V LP]: DIGITAL INPUT for 24Vdc - loop powered

HINT: The last 1O type & automatically stored in FRAM and will be used after a system restart,

SET 10 TYPx WASCI #SIOTYP <IONR>: <IOTypx> <CR> ASCI NO
IWRITE Result:
COMMAND #OK<CR>
IONR 1
|OTypx VI[0-10V]
X 255,SI0TYP1VII0-10V] <CR>
RX

This command defines for the universal 10 IONR a new type of I0;

I0Typx stands for the new type:

UL Unused - high impedance

VI[0-10V]): VOLTAGE INPUT for O to 10V Signals

[VI[2-100]: VOLTAGE INPUT for 2 to 10V Signals

(VO[D-10V]: VOLTAGE OUTPUT for O to 10V Signals

VO[2-10V]: VOLTAGE QUTPUT for 2 to 10V Signals]

C1(0-20mA;LP); CURRENT INPUT for 0 to 20ma Signals — loop powered
CI[4-20mALP]: CURRENT INPUT for 4 ta 20md Signals — loop powered
CI[0-20mAER]: CURRENT INPUT for 0 to 20mé Signals = external powered
[CI[4-20mAEP]: CURRENT INPUT for 4 to 20mA Signals — external powered
(CO[0-20mA]: CURRENT QUTPUT for O to 20mA Signals

(CO[4-20mA] CURRENT QUTPUT for 4 1o 20mA Signals

RTCH[OHM]: RTD SENSOR INPUTfor Ohm measurement between 0 and TMOhm
DI[24V:L]: DIGITAL INPUT for 24Vdc — logic, threshold 12V

D1[24V LP]: DIGITAL INPUT for 24Vdc — loop powered

HINT: The last IC type is automatically stored in FRAM and will be used after a system restart

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 123 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

You can read back the current setting for all AIOX with GIOTYPS or for one channel with GIOTYPx:

GET 10 TYPES ASCI #GIOTYPS<CR> ASCII
READ Result:
COMMAND #GIOTYPS <I0TyplTxt> <|0OTyp2 Tut>. < |OTypl6Txt> <CR>
™ 10TYI
RX
Actual type of I0TVO[0-10V]
Actual type of 102:VO[0-10V
Actual type of 103:VO[0-10V
Actual type of 104:VO[0-10V]
Actual type of I05:VO[0-10V
iActual type of I06:VO[0-10V]
Actual type of IO7VO[0-10V]
Actual type of |IO8:VO[D-10V
[Actual type of I09:VO[0-10V
Actual of 1010:VO[0-10V]
IActual type of I011:VO[0-10V]
Actual type of |012:VO[D-10V]
Actual type of I013:VO[0-10V]
(Actual type of 1014:VO[0-10V]
Actual type of 1015:VO[0-10V]
Actual type of I016:VO[0-10V]
This command shows for all 16 universal I0s the current selected type of 10:
1O Typx stands for the types:
UL Unused - high impedance
[VI[0-10V]): VOLTAGE INPUT for O to 10V Signals
VI[2-10V]: VOLTAGE INPUT for 2 to 10V Signals
[VO[0-10V]: VOLTAGE QUTPUT for 0 to 10V Signals
VO[2-10V]: VOLTAGE QUTPUT for 2 to 10V Signals]
CI[0-20mALP]: CURRENT INPUT for 0 to 20mA Signals - loop powered
CI[4-20mALP]: CURRENT INPUT for 4 to 20md Signals — loop powered
CI[0-20mAER]: CURRENT INPUT for 0 to 20mA Signals - external powered
CI[4-20mAER]: CURRENT INPUT for 4 to 20mA Signals - external powered
CO[0-20mA]: CURRENT QUTPUT for 0 to 20mA Signals
(COf4-20mA] CURRENT QUTPUT for 4 to 20mA Signals
RTDI[OHM]: RTD SENSOR INPUTfor Ohm measurement between O and IMOhm
DI[24VL): DIGITAL INPUT for 24Vdc - logic, threshold 12V
DI[24V-LP]: DIGITAL INPUT for 24Vde - loop powered
GET 10 TYPx WASCI #GIOTYP<IONR> <CR> ASCI
READ Result:
COMMAND #QIOTYP<|ONR> < |OTypx x> <CR>
IONR 1
[TX TYP1<CR>
RX
Actual type of I0TVO[0-10V]

This command shows for the universal 10 IONR the current selected type
IOTypx stands for the types:

UL Unused - high impedance

[VI[0-10V]: VOLTAGE INPUT for O to 10V Signals

[VI[2-10V]: VOLTAGE INPUT for 2 to 10V Signals

[VO[D-10V]: VOLTAGE OUTPUT for O to 10V Signals

VO[2-10V]: VOLTAGE OQUTPUT for 2 to 10V Signals]

CI[0-20mA;LP): CURRENT INPUT for 0 to 20mA Signals - loop powered
CI[4-20mALP): CURRENT INPUT for 4 ta 20mA Signals - loop powered
(CI[0-20mAER]: CURRENT INPUT for O to 20md Signals - external powered
CI[4-20mAER]: CURRENT INPUT for 4 to 20mA Signals - external powered
CO[0-20mA): CURRENT OUTPUT for 0 to 20mA Signals

(COf4-20mA]: CURRENT QUTPUT for 4 to 20mA Signals

RTCH[OHM]: RTD SENSOR INPUTfor Ohm measurement between 0 and TMOhm
DI[24VL): DIGITAL INPUT for 24vdc - logic, threshold 12V

DI[24V,LP]: DIGITAL INPUT for 24Vdc - loop powered

In MODBUS you have the following holding registers to configure the type of the analog inputs or outputs:

JAIOX 10 TYPES

1O TYPE1 3x40001 13,0x000D 13:RTDI[OHM] UINT16 YES
[4x40001 B:00 0D R/W
1:40000

Actual IO type of AIOx:13:RTDI[OHM] CHOOSE NEW 10 TYPE FROM LIST

[Current configured 10 type for AIOXx

=0: UNUSED

=1: VOLTAGE INPUT[O-10V]

=2: VOLTAGE INPUT[2-10V]

=3: VOLTAGE QUTPUT[0-10V]

=4 VOLTAGE QUTPUT[2-10V]

=5 CURRENT INPUT LOOP POWERED[D-20maA]

=6 CURRENT INPUT LOOP POWERED([4-20maA)

=7: CURRENT INPUT EXTERMAL POWERED[D-20mA]

=8 CURRENT INPUT EXTERNAL POWERED[4-20mA]

=9: CURRENT OUTPUT[0-20mA]

=10: CURRENT QUTPUT[4-20mA]

=11: DIGITAL INPUT LOGIC 24v=

=12: DIGITAL INPUT LOOP POWERED

=13; RESISTANCE MEASUREMENT

HIMT: The last 10 type i automatically stored in FRAM and will be used after a system restart,

10 TYPE2 3x40002 12,0x000C 12:DI[24V;LP] UINT16 YES
14x40002 B:00 0C R/W
140001

Actual IO type of AIOx:12:DI[24V,LP] CHOOSE NEW 10 TYPE FROM LIST

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

124 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

8.3.4.43 Howto read analog inputs 0-10V or 2-10V

If an AIOX is configured either to ANALOG INPUT with 0-10V or to ANALOG INPUT with 2-10V you can use the

ASCII commands GVISV or GVIVx to read the actual value of the analog input:
IVOLTAGE INPUTS

GET WOLTAGE INPUTS ASCI #GVISV<CR> ASCI
INVOLT READ Result:

CO Ed < > < > < bl><CR>

X 255 GVISV<CR>

RX

Actual voltage on 101:999.99V
Actual voltage on 102:939.99V
Actual voltage on 103:999 99V
Actual voltage on 104:999.99V
Actual voltage on 105:999.99v
|Actual voltage on 106:999.99V
Actual voltage on 107:999.99V
|Actual voltage on 108:999.99V
Actual voltage on 109:999.99V
|Actual voltage on 1010:999.99V
Actual voltage on 1011:999.99V
|Actual voltage on 1012:999 99V
Actual voltage on 1013:999 99V
Actual voltage on 1014:999.99V
Actual voltage on 1015:999.99V
Actual voltage on 1016:999.99Y
This command shows for all VOLTAGE INPUT 10s the current measurement in Valt

The measurement range is 0.0 to 10,00V,
All 10 with a different usage type will return 99999 to indicate, that no measurement is done,

GET VOLTAGE INPUT SCil #GVIV<IONR> <CR> ASCII
INVOLT READ Result:

COMMAND #GVIV<|IONR> <|OxVoltDbl> <CR>

IONR 1

T 255 GVIV1<CR>

RX

| ctual voltage on 101:999.99V
This command shows for the VOLTAGE INPUT IO <IONR> the current measurement in Volt.

[The measurement range is 0.0 to 10.00V.

All 105 with a different usage type will return 999.99 to indicate, that no measurement is done.

For all AIOX, which have a different 10 type, this function returns 999.99. Otherwise the last measured analog input
will be returned.

But you can read the analog input also as percentage value with the ASCII command GVISP or GVIPx:

GET VOLTAGE INPUTS ASCI #GVISP<CR> ASCI
IN PERCENT READ Result:

COMMAND #GV|SP: <|0Percent1Dbl> <|0Percent?Dbl> . <|OPercentlbDbl> <CR>

T P<CR>

RX

Actual percentage on 101:999.99%

Actual percentage on 102:999.99%

(Actual percentage on 103:999.99%

Actual percentage on 104:999.99%

Actual percentage on 105:999.99%

Actual percentage on 106:999.99%

Actual percentage on 107:999.99%

Actual percentage on 108:999.99%

Actual percentage on 109:999.99%

(Actual percentage on 1010:999.99%
Actual percentage on 1011:999.99%
Actual percentage on 1012:999.99%
Actual percentage on 1013:999.99%
Actual percentage on 1014:999.99%
Actual percentage on 1015:999.99%
Actual percentage on 1016:999.99%
This command shows for all VOLTAGE INPUT 105 the current measurement in Percent

The measurement range is 0.0V -> 0.0% to 10,00V -> 100.0%.
4l 1Cs with a different usage type will return %3999 to indicate, that no measurement is done

(GET VOLTAGE INPUT ASCI #GVIP<IONR> <CR> ASCII
IN PERCENT READ Result:

COMMAND #QVIP<|ONR>:<10xPercentDbl> <CR>

IONR L

T #255 GVIP1<CR>

RX P
al percentage on 101:999.99%

[This command shows for VOLTAGE INPUT 10 <IONR=> the current measurement in Percent.
[The measurement range is 0.0V -> 0.0% to 10.00V -> 100.0%.
Al 10s with a different usage type will return 999,99 to indicate, that no measurement is done.

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 125 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

On the MODBUS interface you can read the actual value of the analog inputs with this holding registers:
IAIOX:VOLTAGE INPUTS

VOLTAGE INPUTY 40017 65535,0xFFFF UINTTG
IN VOLTS 440017 B:FF FF R/O
140016
Actual value of VIx:65535=N/V

[Current value of voltage input in x*100V, range 0-10V
=65535,0xFFFF: The channel is not configured as voltage input

VOLTAGE INPUTZ2 3x40018 65535,0xFFFF UINT16
IN VOLTS Hhed0018 B:FF FF R/O
140017
Actual value of VIx65535=N/N
VOLTAGE INPUT3 3x40019 0,0x0000 UINT16
IN VOLTS 0019 B:00 00 R/O
LA0018

Actual value of VIx:0=0,00V

If the AIOX is configured to a different type, the return value will be 65535 or OxFFFF. If there is a valid analog input
measurement, the register contains the current Al measurement result in Volts*100. So 537 stands for 5,37V.

But you can also read the AIOX value in percent:
AIOX:VOLTAGE INPUTS

VOLTAGE INPUT1 3x40033 65535,0xFFFF UINT18
IN PERCENT 4x40033 B:FF FF R/O
140032

Actual value of VIx:65535=N/V

[Current value of voltage input in x*100%, range 0-100%
=65535,00FFFF: The channel is not configured as voltage input

VOLTAGE INPUT3 3140034 65535, 0xFFFF UINT16
IN PERCENT 4x40034 B:FF FF R/O
140033
IActual value of Vi:B5535=N/V
VOLTAGE INPUT3 3140035 0,0x0000 UINT16
IN PERCENT 4x40035 B:00 00 R/O
140034

[Actual value of VIx.0=0,00%

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 126 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

83444 Howto set an analog output 0-10V or 2-10V

If an AIOX is configured either to ANALOG OUTPUT with 0-10V or to ANALOG OUTPUT with 2-10V you can use the
ASCIl commands SVOSV or SVOVx to set a new value for the analog output. For analog outputs configured 0-10V
you can set a value between 0 to 11V. For outputs configured to 2-10V, you can set 0V to output OV and 2-11V to
output 2-11V. But every value >0 and <2V will be outputted as 2V.

RES/

[VOLTAGE OUTPUTS
SET VOLTAGE QUTPUTS ASCI #SVOSV: <I0WoltDbl>, <I02VoltDbl>, <I03VoltDbl>, <I04VoltDbl>, <|05VoltDbl >, < I06VoltDbl>, <107 ASCI NO
IN VOLT WRITE VoltDbl>, <I08ValtDbl>, <I09VoltDbl>, <I010VoltDbl>, <IO1VoltDbl>, < |012VeltDbl>, <1013VoltDbl >, <I
COMMAND O14voltDbl >, <1015VeltDbl >, <I016VolDbl> <CR>
Result
KB
I01Volt 10,000
102Volt 7,500
I03Volt 5,500
104Volt 2,500
I05Volt 2,000
I06Volt 2,000
Eﬂqj 2,000
ICBVolt 2,000
109Volt 2,000
IO10Volt 2,000
IOV olt 2,000
I012Volt 2,000
2,000
2,000
2,000
[2.000
EZSSISVOSV:‘lUI?,Sl5.5|2,5|2ﬁi iiiililzlilz-(ﬂb
This command sets for al VOLTAGE OUTPUT 105 the current output voltage in Volt.
The range is 0.0 to 11,00V,
SET VOLTAGE QUTPUTx ASCI #SVOV<|ONR>:<|OxVoltDbl> <CR> ASCI NO
IN VOLT WRITE Result:
COMMAND #0K<(R>
IONR 1
1OxVolt 2,000
™
This command sets for VOLTAGE QUTPUT 10 <IONR= the current output voltage in Volt
[The range is 0.0 to 11.00V.
But you can also set a new value for the analog outputs in percent:
SET VOLTAGE QUTPUTS ASCI #5VOSP: <IO1PercentDbl>, <|O02PercentDbl >, <|O3PercentDbl >, <|O4PercentDbl >, <I05PercentDbl >, < ASCH NO
IN PERCENT IWRITE (O6PercentDbl >, <I07PercentDbl >, <IO8PercentDbl =, <IQ9Percent Dol >, <|C10PercentDbl>, <10 11Percen
COMMAND tDbl>, <I012PercentDbl>, <I013PercentDbl>, <IO14PercentDbl>, < I015PercentDbl>, <I016PercentDbl > <
CR>
Result:
HOK <CR
IO1Percent 110,000
|02Percent 100,000
|03Percent 75,000
|04Percent 50,000
|05Percent 110,000
|06Percent 100,000
|107Percent 75,000
|08Percent 50,000
|I09Percent 110,000
1010Per: 100,000
IOf1Percent [75.000
|O12Percent 50,000
|013Percent 110,000
IO14Percent 100,000
I015Percent 75,000
|IO16Percent 50,000
123 #, P:110,100,7 110,100,75,50,110,100,75,50.11 75.50<CR>
RX
This command sets for all VOLTAGE OUTPUT 10s the current output voltage in Percent
The range is 0.0V -> 0.00% to 11.00V -> 110.00%.
SET VOLTAGE OUTPUTX ASCI #SVOP <IONR>: <IOxPercentDbl> <CR> ASCI NO
IN PERCENT 'WRITE Result:
COMMAND #OK<CR>
IONR 1
|OxPercent 2,000
T
RX
This command sets for VOLTAGE OUTPUT 10 <IOMNR=> the current output voltage in Percent,
The range is 0.0V -> 0.00% to 11.00V -> 110.00%.
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 127von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

To read back the actual value of the analog outputs use the commands GVOVS or GVOVx:

GET VOLTAGE QUTPUTS ASCI #GVOSV<CR> ASCII
IN VOLT READ Result:
COMMAND # < > < S VoltDbl> <CR>
™ 255,GVOSV < CR>
RX
Actual voltage output on 101:0.00V
Actual voltage output on 102:0.00V
Actual voltage output on 103:0.00V
Actual voltage output on 104:0.00V
Actual voltage output on 105:0.00V
Actual voltage output on 106:0.00V
Actual voltage output on 107:0.00V
Actual voltage output on 108:0.00V
Actual voltage output on 109:0.00V
iActual voltage output on 1010.0.00V
Actual voltage output on 1011:0.00V
Actual voltage output on 1012:0.00V
Actual voltage output on 1013:0.00V
Actual voltage output on 1014:0.00V
Actual voltage output on 1015:0.00V
[Actual voltage output on 1016:0.00V
This command shows for all VOLTAGE OUTPUT 10s the current output voltage in Volt.
The range is 0.0V to 11.00V.
Al 10s with a different usage type will return %39.99 to indicate, that no measurement is done.
GET VOLTAGE OUTPUT ASCI #GVOV <IONR> <CR> ASCII
IN VOLT READ Result:
COMMAND I#GVOY <IONR > <10x\oltDbl> <CR>
IONR 3 |
X <CR>
RX
Actual voltage output on 103:0.00V
This command shows for VOLTAGE QUTPUT 10 <IONR> the current output voltage in Volt
The range s 0.0V to 11.00V,
LAl 10s with a different usage type will return 999,99 1o indicate, that no measurement is done.
Again you can read back the analog outputs also as a percent value with these commands:
GET VOLTAGE OUTPUTS WASCI #GVOSP<CR> ASCI
IN PERCENT READ Result:
COMMAND HOVOSP: < |O1PercentDhl> <102 PercentDhls . <|016PercentDbl= < CR>
ITX <CR=>
RX
Actual percentage voltage output on 101:0.00%
Actual percentage voltage output on 102:0.00%
Actual percentage voltage output on 103:0.00%
Actual percentage voltage output on 104:0.00%
Actual percentage voltage output on 105:0.00%
|Actual percentage voltage output on 106:0.00%
Actual percentage voltage output on 107:0.00%
|Actual percentage voltage output on 108:0.00%
Actual percentage voltage output on 109:0.00%
|Actual percentage voltage output on 1010:0.00%
Actual percentage voltage output on 1011:0.00%
Actual percentage voltage output on 1012:0.00%
Actual percentage voltage output on 1013:0.00%
Actual percentage voltage output on 1014:0.00%
Actual percentage voltage output on 1015:0.00%
Actual percentage voltage output on 1016:0.00%
This command shows for all VOLTAGE QUTPUT 10s the current output voltage in Percent
The range is 0.0V -> 0.00% 1o 11.00V -> 110.00% (10.00V -> 100.00%)
All 105 with a different usage type will return 99999 1o indicate, that no measurement is done,
GET VOLTAGE OUTPUT SCH #GVOP <IONR> <CR> ASCII
IN PERCENT READ Result:
COMMAND #GVOP <|ONR>: <|OxPercentDil> <CR>
IONR 3
[TX 255 GVOP3<CR>
RX
Actual percentage voltage output on 103:0.00%
[This command shows for VOLTAGE QUTPUT IQ <IONR> the current output voltage in Percent.
The range is 0.0V -> 0.00% to 1100V -> T10.00% (10.00V -> 100.00%).
All 10s with a different usage type will return 999.99 to indicate, that no measurement is done.

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

128 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

In addition to detect any error in the analog output, the actual output current of the voltage output is measured
too. You can read this value with the function GVOSC or GVOCx. A value >30mA is a good indication of a short cut
on the analog output.

GET VOLTAGE OUTPUTS ASCI #GVOSC<CR> ASCII
(CURRENT READ Result:

COMMAND #GYVOSC <|IOmAIDDI>, < IOmAZDDI> .. <10mATEDbI> <CR>

X |#255,GVOSC<CR>

RX

Actual output current on 101:.0.00mA
Actual output current on 102:0.00mA

Actual output current on 103.0.00mA

Actual output current on 104:-0.00mA

Actual output current on 105:0.00mA

Actual output current on 106:0.00mA

Actual output current on 107:0.00mA

Actual output current on 108:0.00mA

Actual output current on 109:0.00mA

Actual output current on 1010:0.00mA
Actual output current on 1011:0.00mA
Actual output current on 1012:0.00mA
Actual output current on 1013:0.00mA
Actual output current on 1014:0.00mA
Actual output current on 1015:0.00mA
Actual output current on 1016:0.00mA
This command shows for all VOLTAGE OUTPUT 10s the actual current in mé,

The measurement range is 0.0mA to 35ma
LA 105 with a different usage type will return 93999 to indicate, that no measurement is done

(GET VOLTAGE QUTPUT ASCII #GVOC<IOMR><CR> ASCI
(CURRENT READ Result

COMMAND. #GYOC <|ONR>:<|OxmADD> <CR>

IONR 1

LS <CR>
|BX
Actual output current on 101:0.00mA

This command shows for VOLTAGE QUTPUT 10 <IONR> the actual current in mA
The measurement range is 0.0mA to 35mA
AN IO with a different usage type will return 999,99 to indicate, that no measurement is done

On the MODBUS you have again holding registers to output a new value for the configured analog outputs:
JAIOXVOLTAGE OUTPUTS

VOLTAGE OUTPUTI 3x40049 65535,0xFFFF 100 n UINT16 NO
IN VOLTS 4x40049 B:FF FF R/W
140048
Actual value of VOx:65535=N/V ENTER NEW VALLUE FOR VOx

[Current value of voltage output in x*100V, range 0-11V
=65535,06FFFF: The channel is not configured as voltage output

[Writing a new value onto this register sets voltage output x 1o a new output value in Valt

VOLTAGE OUTPUTZ 3x40050 65535,0xFFFF 100 n UINT16 NO
IN VOLTS 0050 B:FF FF RAW
140049
Actual value of VOx:65535=N/V ENTER NEW VALUE FOR VOx
WVOLTAGE OUTPUT3 3x40051 65535,0xFFFF 100 n UINT16 NO
IN VOLTS 4xd0051 B:FF FF RAW
140050
Actual value of VOx:65535=N/V ENTER NEW VALUE FOR VOx
WVOLTAGE OUTPUTA 340052 65535,0xFFFF 100 n UINT16 NO
IN VOLTS 4xd0052 B:FF FF RAW
1: 40051
Actual value of VOx:65535=N/ ENTER NEW WALUE FOR VOx

You can choose also the registers to use percent values:

IAIOX:VOLTAGE OUTPUTS
VOLTAGE QUTPUTI 3x40065 65535,0xFFFF 1000 10 UINT16 NO
IN PERCENT 4x40065 B:FF FF R/W
140064
Actual value of VOx65535=N/ ENTER NEW WALUE FOR VOx
(Current value of voltage output in x*100%, range 0-110% (100%=10V}
=65535,0¢FFFF: The channel is not configured as voltage output
[Writing a new value onto this register sets voltage output x to a new output value in percent
VOLTAGE QUTPUTZ 3x40066 65535,0xFFFF 5000 50 UINT16 NO
IN PERCENT 4x40066 B:FF FF R/W
140065
Actual value of VOx:65535=N/V ENTER NEW WALUE FOR VOx
VOLTAGE QUTPUT3 3x40067 65535,0xFFFF 3000 20 UINT16 NO
IN PERCENT 4x40067 B:FF FF R/W
140066
Actual value of VOx:65535=N/N ENTER NEW VALUE FOR VOx
VOLTAGE OUTPUT4 3x40068 65535,0xFFFF 7500 75 UINT16 NO
IN PERCENT 14x40068 B:FF FF R/W
140067
Actual value of VOx:65535=N/N ENTER NEW VALUE FOR VOx
RES! Informatik & Automation GmbH RESI-T4/C4 IoT Controller 129 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

To read back the actual output current with MODBUS registers use this registers:

IAIOX:VOLTAGE OQUTPUTS
VOLTAGE QUTPUTY 3x40081 -32768,0x8000 SINT16
MEASURED CURRENT 4xA0081 B:80 00 R/O
40080
Actual measured output current of VOx:-32768=N/V
Returns the measured output current in x*100mA on voltage output VO, Range -25mA.. +25mA
=-32768,0x8000: The channel is not configured as voltage output
VOLTAGE QUTPUTZ 3x40082 -32768,0xB8000 SINT16
MEASURED CURRENT 4x40082 B:BO 0O R/O
140081
Actual measured output current of VOx:-32768=N/V
VOLTAGE QUTPUT3 3x40083 -32768,0x8000 SINT16
MEASURED CURRENT 4x40083 B8O 0O R/O
4008
IActual measured output current of VOx:-32768=N/V
VOLTAGE QUTPUT4 3340084 -32768,0x8000 SINT16
MEASURED CURRENT 4x40084 B:80 0O R/O
40083
IActual measured output current of VOx:-32768=N/V

8.3.4.4.5

Howto read analog inputs 0-20mA or 4-20mA

If an AIOX is configured either to ANALOG INPUT with 0-20mA or to ANALOG INPUT with 4-20mA you can use the
ASCIl commands GCISMA or GCIMAX to read the actual value of the analog input:

ICURRENT INPUTS

GET CURRENT INPUTS ASCI #GCISMA<CR> ASCII
IN mA READ Result:
COMMAND #GCISMA <10TmADDBI>, <|02mADbl >, <|016mADDI> <CR>
™ 255 GCISMA<CR>
RX
Actual current input on 101:999.99mA
Actual current input on 102:999.99mA
Actual current input on 103:999.99mA
(Actual current input on 104:999.99mA
Actual current input on 105:999.99mA
[Actual current input on 106:999.99mA
Actual current input on 107:999.99mA
IActual current input on 108:999.99mA
Actual current input on 109:999.99mA
Actual current input on 1010:999.99mA
IActual current input on 1011:999.99mA
Actual current input on 1012:999.99mA
IActual current input on 1013:999.99mA
Actual current input on 1014:999.99mA
Actual current input on 1015:999.99mA4
Actual current input on 1016:999.99mA
This command shows for all CURRENT INPUT ICs the current measured input current in mé,
The range is 0.00 1o 25.00mA
All 105 with a different usage type will return 239,95 1o indicate, that no measurement is done
GET CURRENT INPUT ASCI #GCIMA<IONR> <CR> ASCI
IN mA READ Result:
COMMAND [#GCIMA<|ONR>:<|OxmADbI> <CR>
IONR 3
T <CR>
RX
ual current input on 103:999.99mA
This command shows for CURRENT INPUT 10 <IONR> the current measured input current in mA,
The range is 0.00 to 25.00mA
LAl 105 with a different usage type will return 93999 to indicate, that no measurement is done.
But you can also read this value as a percent value:
(GET CURRENT INPUTS ‘ASCII #GCISP<CR> ASCH
IN PERCENT READ Result:
COMMAND #
X
RX

Actual percentage for current input on 101:999.99%

Actual percentage for current input on 102:999.

Actual percentage for current input on

03:999.

Actual percentage for current input on

04:999.

Actual percentage for current input on

05:999.

Actual percentage for current input on

®|R[R[2|R

06!

Actual percentage for current input on

07.999.¢

#

Actual percentage for current input on

08:999.99%

Actual percentage for current input on 109:999.99%

Actual percentage for current input on 1010:999.99%

Actual percentage for current input on 1011:999.99%

Actual percentage for current input on 1012:999.99%

Actual percentage for current input on 1013:999.99%

Actual percentage for current input on 1014:999.99%

Actual percentage for current input on 1015:999.99%

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

130von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

[Actual percentage for current input on 1016:999.99%

The range is 0.00mA -> 0.00% to 25.00mA -> 125.00% (20mA=100%)

This command shows for all CURRENT INPUT 125 the current measured input current in Percent

LAl IOs with a different usage type will return 939.99 fo indicate, that no measurement is done

GET CURRENT INPUT ASCI #GCIP<IONR><CR=> ASCI
IN PERCENT READ Result:
COMMAND #GQCIP<|ONR>: <|0xPercentDbl> <CR=>
IONR 3
IS 255 GCIP3<CR>
RX
ctual percentage for current input on 103:999.99%
[This command shows for CURRENT INPUT 1O <IONR> the current measured input current in Percent.
The range is 0.00mA -> 0.00% to 25.00mA -> 125.00% {20mA=100%%)
Al IO with a different usage type will return 999.99 fo indicate, that no measurement is done.
On the MODBUS side, you can read out the actual values for a current input from the registers:
JAIOX:CURRENT. INPUTS
(CURRENT INPUT1 3x40097 65535,0xFFFF UINT1E
IN MILLIAMPERE 4x40097 B:FF FF R/O
L A0096
Actual value of Che65535=N/V
[Current value of current input in x*100maA, range 0-25maA
=65535,06FFFF: The channel is not configured as current input
CURRENT INPUT2 2x40098 65535,0xFFFF UINT16
IN MILLIAMPERE 4x40098 B:FF FF R/O
40097
Actual value of VIx:65535=N/V
(CURRENT INPUT3 3x40099 65535,0xFFFF UINT16
IN MILLIAMPERE 4x40099 B:FF FF R/O
140098
Actual value of VIx65535=N/V
or again in percent, if you like:
JAIOX:CURRENT. INPUTS
[CURRENT INPUT1 3x40113 65535,0xFFFF UINT16
IN PERCENT 1440113 B:FF FF R/O
140112

Actual value of Clx65535=N/V

[Current value of current input in x*100%, range 0-125% {100%=20mA)
65535,0xFFFF: The channel is not configured as current input

8.3.4.4.6 Howto set analog outputs 0-20mA or 4-20mA

If an AIOX is configured either to ANALOG OUTPUT with 0-20mA or to ANALOG OUTPUT with 4-20mA you can
use the ASCIl commands SCOSMA or SCOMAX to write a new value to the AIOX:;

ICURRENT QUTPUTS
SET CURRENT QUTPUTS ASCIl #SCOSMA:<IOTmADDI>, <I02mADbI>, <103mADbl>, <I04mADbl>, <|05mADbl >, <|06mADbl=, <I07m ASCI NO
IN mA WRITE ADbl>, <|O8mADDI=,<I09mADbl>, <IO10mADbI =, <I01mADbI>, <I012mADbI >, <1013mADbl >, <I014m
COMMAND ADbl=>, <I015mADDl >, <1016mADbI> <CR>
Result:
#OK<CR
1O1mA 000
102mA 4,000
103mA 6.000
104mA 25,000
105mA ,000
106mA ,000
I07mA ,000
108mA ,000
109mA 000
1010mA 000
1O1ImA ,000
1012mA ,000
1013mA ,000
1O014mA. ,000
1015mA ,000
1016mA 000
™ #, 4, <CR>
RX
This command sets for all CURRENT QUTPUT ICs the actual output current in mA,
The range is 0.00mA to 25.00ma
SET CURRENT OUTPUTx ASCI #SCOMA<IONR=>:<|OxmADbI> <CR> ASCI NO
IN mA 'WRITE Result:
COMMAND #OK<CR>
IONR L
IOxVolt 2,000
1L
This command sets for CURRENT OUTPUT <IONR> |0s the actual output current in mA
[The range is 0.00md 1o 25 00mA
RES! Informatik & Automation GmbH RESI-T4/C4 IoT Controller 13Tvon 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The following MODBUS registers do the same job:

JAIOX.CURRENT OUTPUTS
(CURRENT QUTPUT1 3x40129 65535,0xFFFF 500 5 UINT16 NO
IN MILIAMPERE 1440129 B:FF FF R/W
140128
Actual value of COxB5535=N/V ENTER NEW VALUE FOR COx
[Current value of current output in x*100maA, range 0-25mA
=65535,0«FFFF: The channel is not configured as current output
[Writing a new value onto this register sets current output x 1o a new output value in Millampere
(CURRENT QUTPUTZ 3x40130 65535,0xFFFF 500 3 UINT16 NO
IN MILIAMPERE Ax40130 B:FF FF RW
140129
Actual value of COxA5535=N/V ENTER NEW WALUE FOR COx
(CURRENT QUTPUT3 3x40131 65535,0xFFFF 500 5 UINTI6 NO
IN MILIAMPERE Ax40131 B:FF FF RW
140130
Actual value of COx:65535=N/V EMNTER MEW WALUE FOR COx
You can also write a new current value in percent to the AIOX with the commands SCOSP or SCOPx:
SET CURRENT QUTPUTS ASCI #SCOSP: <I01PercentDbl >, <I02PercentDbl >, <I03PercentDbl >, < |04PercentDbl >, <IO5PercentDbl >, <I ASCI NO
IN PERCENT WRITE O6PercentDbl>, <|O7PercentDbl>, <|0O8PercentDbl>, <109PercentDbl>, <IO10PercentDbl>, <IO11Percen
ICOMMAND [tDbl >, <I012PercentDbl >, <1013PercentDbl>, <IO14PercentDbl >, <I015PercentDbl >, < I016PercentDbl> <
CR>
Result:
K<CR
|O1Percent %%006
|IO2Percent 100,000
I03Percent 75,000
|04Percent 50,000
|OS5Percent 000
|06Percent 000
|O7Percent 000
|O8Percent ,000
|09Percent ,000
|O10Percent ,000
I011Percent ,000
|I012Percent 000
|013Percent 000
|O14Percent ,000
I015Percent ,000
|O16Percent ,000
™ # <CR>
RX
This command sets for all CURRENT QUTPUT ICs the new output current in Percent.
The range is 0.00mA -> 0.00% to 25.00mA -> 125.00% (20mA -> 100.00%)
SET CURRENT OUTPUTx ASCI #SCOP<IONR=>:<|OxPercentDbl> <CR> ASCII NO
IN PERCENT WRITE Result:
COMMAND #OK<CR>
IONR 1
[OxPercent 000
N
RX
This command sets for CURRENT OUTPUT 10 <IOMNR> the new output current in Percent.
The range is 0.00mA -> 0.00% to 25.00mA -> 125.00% (20mA - > 100.00%)
To read back the actual value of the current output in Milliampere use the commands GCOSMA or GCOMAX:
GET CURRENT QUTPUTS ASCI #GCOSMA <CR> ASCII
IN mA READ Result:
COMMAND [# ADDl> <CR>
T
RX
al value of current output on 101:999.99mA
JActual value of current output on 102:999.99mA
RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 132 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Actual value of current output on 103:939.99mA

Actual value of current output on 104:999.99mA

Actual value of current output on 105:999.99mA

Actual value of current output on 106:999.99mA

Actual value of current output on I07:999.99mA

Actual value of current output on 108:999.99mA

Actual value of current output on 109:999.99mA

Actual value of current output on 1010:999.99mA

Actual value of current output on 1011:999.99mA

|Actual value of current output on 1012:999.99mA

Actual value of current output on 1013:999.99mA
JActual value of current output on 1014:999.99mA
Actual value of current output on 1015:999.99mA
Actual value of current output on 1016:999 99mA

[The range is 0.00mA to 25.00mA

This command shows for all CURRENT QUTPUT 105 the actual output current in mA,

Al 105 with a different usage type will return 999.99 1o indicate, that no measurement is done.

(GET CURRENT QUTPUT WASCI #GCOMA<IONR><CR> ASCI
IN mA READ Result:
COMMAND #GCOMA <IOMNR>: <|OxmADb|> <CR>
IONR 3
X 255,GCOMA3 <CR>
RX
Actual value of current output on 103:999.99mA
This command shows for CURRENT QUTPUT 10 <IONR=> the actual output current in mA.
The range is 0.00mA to 25.00mA
LAl 105 with a different usage type will return 999.949 1o indicate, that no measurement is done.
Use these MODBUS registers to write percentage values to the current outputs:
IAIOX:CURRENT. OUTPUTS
(CURRENT QUTPUTI 3x40145 65535,0xFFFF 5000 50 UINTI1E NO
IN PERCENT 40145 B:FF FF R/W
140144
Actual value of COxB5535=N/V ENTER NEW VALUE FOR COx
[Current value of current output in x*100%, range 0-125% (100%=20mA)
65535,04FFFF: The channel is not configured as current output
[Writing a new value onto this register sets current output x to a new output value in percent
(CURRENT QUTPUTZ2 3x40046 65535,0xFFFF 5000 50 UINTI6 NO
IN PERCENT 40146 B:FF FF R/W
140145
Actual value of COxB5535=N/Y ENTER NEW WALUE FOR COx
(CURRENT OUTPUT3 3x40147 65535,0xFFFF 5000 50 UINT16 NO
IN PERCENT Ax40147 B:FF FF R/W
140146
Actual value of COx:65535=N/V ENTER NEW WALUE FOR COx

If you use an AIOX as current output the system measures also the actual voltage on the current outputs. You can
use this value to detect some errors in the current output. Use the ASCII commands GCOSV or GCOVx to read-back

the actual voltage:

lR)(

Measured voltage of current output on 103:999.99V

[The range & 0-10V

(GET CURRENT QUTPUTS ASCI #GCOSV<CR> ASCI
VOLTAGE READ Result:
COMMAND #GCOSY-<|Q1VoltsDbl=. <102VoltsDbl> .. <|016YoltsDbl> <CR>
T 255,GCOSV<CR>
RX
Measured voltage of current output on 101:999.99V
Measured voltage of current output on 102:999.99V
Measured voltage of current output on 103:999.99V
Measured voltage of current output on 104:999.93Y
Measured voltage of current output on 105:999.99V
Measured voltage of current output on 106:999.99V
|Measurec voltage of current output on 107:999.99v
[Measured voltage of current output on 108:999.93V
Measured voltage of current output on 109:999.99V
Measured voltage of current output on 1010:999.99V
Measured voltage of current output on 1011:999.99V
Measured voltage of current output on 1012:999.99V
Measured voltage of current output on 1013:999.99V
Measured voltage of current output on 1014:999 99V
@ voltage of current output on 1015:999.99V
Measured voltage of current output on 1016:999.99V
This command shows for all CURRENT QUTPUT 10s the actual output voltage in Volt
The range is 0-10V
ANl IO with a different usage type will return 999.99 fo indicate, that no measurement is done.
GET CURRENT OUTPUT ASCI #GCOV <IONR> <CR> ASCII
VOLTAGE READ Result:
COMMAND #GCOV <IONR > <IOxVoltDbl> <CR>
IONR 3
X <CR>

This command shows for CURRENT QUTPUT 10 <IONR= the actual output voltage in Volt.

All I0s with a different usage type will return 999.99 1o indicate, that no measurement is done.

This MODBUS registers have the same purpose to give back the actual measured voltage for a current output.

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

133 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

I0X.CURRENT. QUTPUTS
CURRENT QUTPUTI 3x40161 65535,0xFFFF UINTI6
MEASURED VOLTS 4x40161 B:FF FF R/O
[-A0160
Actual measured output voltage COx65535=N/V
[Current measured output voltage for current output x*100V, range 0-10V
=65535,06FFFF: The channel is not configured as current gutput
(CURRENT QUTPUT2 3x40162 65535,0xFFFF UINT16
MEASURED VOLTS 4x40162 B:FF FF R/O
140161
Actual measured output voltage COx65535=N/V
[CURRENT OUTPUT3 Ix40163 65535,0xFFFF UINT16
MEASURED VOLTS 4x40163 B:FF FF R/Q
40162
Actual measured output voltage COx65535=N/V
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 134 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Or you choose to read-back the values in percent with GCOSP or GCOPx:

(GET CURRENT QUTPUTS ASCI #GCOSP<CR> ASCH
IN PERCENT READ Result:
COl #GCOSP: <IO1PercentDbl>, <102PercentDb| <|016PercentDbl> <CR>
TX 255GCOSP<CR>
RX
Actual percentage of current output on 101:999.99%
Actual percentage of current output on 102:999.99%
Actual percentage of current output on 103:999.99%
Actual percentage of current output on 104:999.99%
Actual percentage of current output on 105:999.99%
Actual percentage of current output on 106:999.99%
Actual percentage of current output on 107:999.99%
Actual percentage of current output on 108:999.99%
Actual percentage of current output on 109:999.99%
Actual percentage of current output on 1010:999.99%
Actual percentage of current output on 1011:999.99%
Actual percentage of current output on 1012:999.99%
Actual percentage of current output on 1013:999.99%
iActual percentage of current output on 1014:999.99%
Actual percentage of current output on 1015:999.99%
Actual percentage of current output on 1016:999.99%
This command shows for all CURRENT QUTPUT 10s the actual output current in Percent.
The range is 0.00mA -> 0.00% to 25.00mA -> 125.00% (20mA -> 100,00%)
AN I0s with a different usage type will return 99953 1o indicate, that no measurement i< done.
GET CURRENT QUTPUT ASCIl #GCOP<IONR><CR> ASCI
IN PERCENT READ Result:
COMMAND #QCOP<|OMR> < |OxPearcentDbl> <CR>
IONR 3
TX <CR>
RX
Actual percentage of current output on 103:999.99%

[This command shows for CURRENT QUTPUT 10 <IONR> the actual output current in Percent
The range is 0.00mA -> 0.00% to 25.00mA -> 125.00% (20mA -> 100.00%)
LAl IO with a different usage type will return 339.59 to indicate, that no measurement is done.

8.3.4.47

Howto read a digital input

If an AIOX is configured either to DIGITAL INPUT for 24Vdc, logic or to DIGITAL INPUT for 24Vdc, loop powered you
can read with the ASCIl commands GVDIS or GVDIx the current status of the digital inputs:

IVOLTAGE DIGITAL INPUTS

(GET VOLTAGE DIGITAL INPUTS WASCI #GVDIS<CR> ASCII
READ Result:
COMMAND __ [# < > < > o< ><(R>
X 255,GVDIS<CR>
RX
|Actual voltage digital input state on 1C1:X
Actual voltage digital input state on 102:X
Actual voltage digital input state on 103:X
Actual voltage digital input state on 104:X
Actual voltage digital input state on 105:X
Actual voltage digital input state on 106:X
Actual voltage digital input state on 107:X
Actual voltage digital input state on 108:X
|Actual voltage digital input state on 109:X
Actual voltage digital input state on 1010:X
|Actual voltage digital input state on 1011:X
Actual voltage digital input state on 1012:X
|Actual voltage digital input state on I013:X
Actual voltage digital input state on I014:X
Actual voltage digital input state on 1015:X
Actual voltage digital input state on 1016:X
This command shaws for all VOLTAGE DIGITAL INPUT Os the current state
[The digital input can have the values 0 and 1.
4l 105 with a different usage type will return X to indicate, that no measurement is done.
GET VOLTAGE DIGITAL INPUT SCll #GVDI<IONR> <CR=> ASCII
READ Result:
Ci |#GVDI<IOMNR > <|0xDIDec> <CR>
IONR 3
[TX 255,GVDI3<CR>
RX
al voltage digital input state on 103:X

[The digital input can have the values 0 and 1.

This command shows for VOLTAGE DIGITAL INPUT 10 <IONR> the current state,

[All 105 with a different usage type will return X to indicate, that no measurement is done.

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

135von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

If you want to read the status with MODBUS use this registers:

JAIOX:DIGITAL INPUTS

DIGITAL INPUT1 Ind0177 65535,0xFFFF UINT16
Ax40177 B:FF FF R/O
L40176
Actual state of digital input DIx:65535=N/V
[Current measured state of digital input Db
=0: Digital input is OFF or loop is closed
=1: Digital input is ON (+24V attached) or loop is open
=65535,00FFFF; The channel is not configured as digital input
DIGITAL INPUT2 Sx40178 1,0x0001 UINT16
AxA0178 B:00 R/O
40177
Actual state of digital input Dix.1=0N
DIGITAL INPUT3 3x40179 65535,0xFFFF UINTI16
1440179 B:FF FF R/O
40178
Actual measured output voltage COx:65535=N/V

The system measures also the actual current for the digital inputs. You can read this current with the ASCII

commands GVDISC or GVDICx:

GET VOLTAGE DIGITAL INPUTS WASCI #GVDISC<CR> ASCI
(CURRENT READ Result:
COMMAND H#OVDISC <IOmAIDDBl> <|0OmA2DBI> . <|OmATBDDI> <CR>
ITX VDISC<CR>
RX
|Actual input current on 101:999.99mA
Actual input current on 102:999.99mA
|Actual input current on 103:999 99mA
Actual input current on 104:999.99mA
Actual input current on 105:999.99mA
Actual input current on 106:999.99mA
Actual input current on 107:999.99mA
Actual input current on 108:999.99mA
lActual input current on 109:999.99mA
Actual input current on 1010:999.99mA
|Actual input current on 1011:999.99mA
Actual input current on 1012:999.99mA
|Actual input current on 1013:999 99mA
Actual input current on 1014:999.99mA
Actual input current on 1015:999.99mA
|Actual input current on 1016:999.99mA
This command shows for all VOLTAGE DIGITAL INPUT 105 the actual current in mé,
The measurement range is 0.0mA to 35ma,
AN 105 with a different usage type will return 995.94 1o indicate, that no measurement is done.
GET VOLTAGE DIGITAL INPUT SCI #GVDIC<IONR> <CR> ASCIH
(CURRENT READ Result:
COMMAMND #QVDIC<|ONR > <|QxmADD|> <CR>
IONR 1
ITX VDIC1<CR>
RX
ctual input current on 101:999 99mA
[This command shows for VOLTAGE DIGITAL INPUT 10 <IONR> the actual current in ma
The measurement range is 0.0mA to 35mA,
LAl 103 with a different usage type will return 999.99 to indicate, that no measurement is done.
The same measured current on the MODBUS registers:
DIGITAL INPUT1 3x40193 -32768,0x8000 SINT16
MEASURED CURRENT 4x40193 B:80 0O R/O
40192
IActual measured output current of Dix;-32768=N/V
Returns the measured output current in x*100mA on DIGITAL INPUT VOx, Range -25mA._+25maA
=-32768,0x8000: The channel is not configured as DIGITAL INPUT
DIGITAL INPUT2 3540194 0,0x0000 SINT16
MEASURED CURRENT 4x40194 B:00 0O R/O
140193
|Actual measured output current of Dix:0=0,00mA
DIGITAL INPUT3 3%40195 -32768,0x8000 SINT16
MEASURED CURRENT 4x40195 B:80 0O R/O
40194
|Actual measured output current of Dix:-32768=N/V

RESI Informatik & Automation GmbH

RESI-T4/C4 |oT Controller

136 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.48

Howto read a resistor value

RES/

If an AIOX is configured to RTD SENSOR INPUT, the input will measure the current resistor value and return this
measurement value in Ohm.
Therefore you have the ASCIl commands GRTDISOHM and GRTDIOHMXx. Both will return the actual resistor value:

RTD. INPUTS
GET RTD INPUTS ASCI #GRTDISOHM <CR> ASCII
IN OHM READ Result:
COMMAND #GRTDISOHM: <1010hmDpl> < 1Q020hmDbl> ... <10160hmDbl> <CR>
TX <CR>
RX
[Actual measured RTD input on 101:99999999.9990hm
Actual measured RTD input on 102:99999999.9990hm
(Actual measured RTD input on 103:99999999,9990hm
Actual measured RTD input on 104:99999999.9990hm
Actual measured RTD input on 105:99999999.9990hm
(Actual measured RTD input on 106:99999999.9990hm
Actual measured RTD input on 107:99999999.9990hm
lActual measured RTD input on 108:99999999.9990hm
Actual measured RTD input on 109:99999999.999Chm
(Actual measured RTD input on 1010:99999999.9990hm
Actual measured RTD input on 1011:99999999.9990hm
Actual measured RTD input on 1012:99999999,9990hm
Actual measured RTD input on 1013:99999999.9990hm
Actual measured RTD input on 1014:99999999,.9990hm
(Actual measured RTD input on 1015:99999999.9990hm
lActual measured RTD input on 1016:99999999.9990hm
[This command shows for RTD INPUT 10s the actual measured RTD value in Ohm.
[The range is 0.0000hm to 1000000.00Chm
All 105 with a different usage type will return 999 to indicate, that no measurement is done.
GET RTD INPUT ASCIl #GRTDIOHM<IONR> <CR> ASCI
IN OHM READ Result:
COMMAND #GRTDIOHM <IONR > <|0xOhmDbl> < CR>
IONR
™ 2 RTDIOHM3 <CR>
RX
al measured RTD input on 103:99999999.9990hm

In addition the AIOX has an integrated average function: It sums up 100 measurements and then updates the
average values. The retrieve this average values use the ASCII commands GAVGRTDISOHM or GAVGRTDIOHMx:

GET AVERAGE RTD INPUTS JASCH #GAVGRTDISOHM<CR> ASCI
IN OHM READ Result:
C # < >.< >o.€ ><CR>
ITX T <CR>
RX
Average measured RTD input on 101:99999999.9990hm
Average measured RTD input on 102:99999999.9990hm
Average measured RTD input on 103:99999999.9990hm
Average measured RTD input on 104:99999999.9990hm
|Average measured RTD input on |05:9 .9990hm
Average measured RTD input on 106:9999 .9990hm
|Average measured RTD input on 107:99399999.9990hm
Average measured RTD input on 108:99939999.9990hm
|Average measured RTD input on 109:99999999.9990hm
Average measured RTD input on 1010:99999999.999Chm
Average measured RTD input on 1011:99999999.9990hm
Average measured RTD input on 1012:99999999.999Chm
Average measured RTD input on 1013:99999999.999Chm
lAverage measured RTD input on 1014:99999999.9990hm
Average measured RTD input on 1015:99999999.9990hm
|Average measured RTD input on 1016:99999999.9390hm
This command shows for RTD INPUT 105 the average measured RTD value in Ohm.
The range is 0.0000hm to 1000000.000hm
Al 105 with a different usage type will return 99999999999 1o indicate, that no measurement is done.
GET AVG RTD INPUT WASCI #GAVGRTDIOHM <IONR=> <CR> ASCII
IN OHM READ Result:
C #GAVGRIDIOHM <IOMR > <|OxObmDbl> <CR>
IONR 3
ITX <CR>
RX
Average measured RTD input on 103:99999999.9990hm
This command shows for RTD INPUT 10 <IONR> the average measured RTD value in Ohm.
The range is 0.0000hm to 1000000.000hm
Al 105 with a different usage type will return 99999999 999 to indicate, that no measurement is done.
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 137 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

You can read the current measurement also via MODBUS with the holding registers. We have mirrored the values in
various register banks to ease the use of the resistor value. The first bank holds the current resistor value multiplied
by 10. But with this registers you can only measure 0 to 600000hm with the accuracy of 0.10hm!

|AICOX:RTD.INPUTS
RTD INPUT1 3x41001 65534, 0xFFFE UINT16
IN OHM*10 [4x41001 B:FF FE R/O
141000
Actual measured ohm value of RTDIx:65534=0PEN
[Current measured RTD in Ohm*10 between 0 and 600000
=0,60000: Current measured resistance in Ohm* 10
=65534,0xFFFE: The sensor or cabling is open {broken, not connected, or out of range)
=65535,06FFFF: The channel is not configured as RTD input
RTD INPUT2 3x41002 65535,0xFFFF UINT1E6
IN OHM*10 14%41002 B:FF FF R/O
141001
Actual measured ohm value of RTDIx:65535=N/V
RTD INPUT3 3x41003 65535,0xFFFF UINT16
IN OHM*10 14x41003 B:FF FF R/O
141002
Actual measured ohm value of RTDIx:65535=N/V
Again you can also read the average values from this holding registers:
|AIOXAVERAGE RTD. INPUTS
AVERAGE RTD INPUT1 3x42001 65534, 0xFFFE UINT16
IN OHM*10 14x42001 B:FF FE R/O
142000
Measured average ohm value of RTDbc65534=0PEN
Measured average RTD in Ohm*10 between 0 and 600000
=0,.60000: Measured average resstance in Ohm*10
=65534,0xFFFE: The sensor or cabling is open {broken, not connected, or out of range)
=65535,06FFFF: The channel is not configured as RTD input
AVERAGE RTD INPUTZ 3x42002 65535,0xFFFF UINT1E
IN OHM*10 4x42002 B:FF FF R/O
142001
Measured average ohm value of RTDIx:65535=N/V
AVERAGE RTD INPUT3 3x42003 65535,0xFFFF UINT16
IN OHM*10 14x42003 B:FF FF R/O
142002
Measured average ohm value of RTDIx:65535=N/V

To be more accurate but with a smaller range you can read holding registers to retrieve the current resistor value
between 0 and 600000hm with the accuracy of 10hm:

|AIOX:RTD. INPUTS
RTD INPUT1 3x1077 8822,x2276 UINT16
IN OHM 4x41017 B:22 76 R/O
141016
Actual measured ohm value of RTDIx:8822=88220hm
Current measured RTD in Ohm*1 between 0 and 60000
=0..60000: Current measured resistance in Ohm*1
=65534,0«FFFE: The sensor or cabling is open {broken, not connected, or out of range)
=55535,0:FFFF: The channel is not configured as RTD input
RTD INPUTZ 3x41018 65535,0xFFFF UINT16
IN OHM [4x41018 B:FF FF R/O
|:A41017
Actual measured ohm value of RTDIx:65535=N/V
RTD INPUT3 3x41019 65535,0xFFFF UINT16
IN OHM 1441019 BFFFF R/IO
141018
Actual measured ohm value of RTDIx65535=N/N
Again as average value in this registers:
|AIOX:AVERAGE RTD INPUTS
AVERAGE RTD INPUT1 3xd2017 8788,0x2254 UINT16
IN OHM 442017 B:22 54 R/O
142016
Measured average ohm value of RTDb:B788=87880hm
Measured average RTD in Ohm*1 between 0 and 60000
=0..60000: Measured average resistance in Ohm*1
=65534,0«FFFE: The sensor or cabling is open {broken, not connected, or out of range)
=65535,06FFFF: The channel is not configured as RTD input
AVERAGE RTD INPUTZ 3x42018 65535,0xFFFF UINT16
IN OHM [4x42018 B:FF FF R/O
142017
Measured average ohm value of RTDbc65535=N/V
AVERAGE RTD INPUT3 3x42019 65535,0xFFFF UINT16
IN OHM 14x42019 BFF FF R/IO
142018
Measured average ohm value of RTDbB5535=N/V
RES! Informatik & Automation GmbH RESI-T4/C4 IoT Controller 138 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

Another register bank stores higher resistor values between 0 and 6000000hm with the accuracy of 100hm.

JAIOX:RTD. INPUTS

RTD INPUT1 3x41033 882,0x0372 UINT1E6
IN OHM/10 14%41033 B:03 72 R/O
141032
Actual measured ohm value of RTDIx:882=8820Chm
[Current measured RTD in Ohmy/10 between 0 and 60000
=0, 60000 Current measured resistance in Ohmy/10
=65534,0xFFFE: The sensor or cabling is open {broken, not connected, or out of range)
=65535,0:FFFF: The channel is not configured as RTD input
RTD INPUT2 3x41034 65535,0xFFFF UINT1E6
IN OHM/10 L4x41034 B.FF FF R/O
141033
Actual measured ohm value of RTDIx:65535=N/V
RTD INPUT3 3x41035 65535,0xFFFF UINT16
IN OHM/10 4x41035 B:FF FF R/O
141034
Actual measured ohm value of RTDIx:65535=N/V
Again also as average values:
IAICXAVERAGE RTD INPUTS
AVERAGE RTD INPUTY 3x42033 879,0x036F UINT1E6
IN OHM/10 [4x42033 B:03 6F R/O
142032
Measured average ohm value of RTDIx:879=87900Chm
Measured average RTD in Ohm/10 between 0 and 60000
=0, 60000: Measured average resistance in Ohm/10
=65534,0xFFFE: The sensor or cabling is open {broken, not connected, or out of range)
=65535,06FFFF: The channel is not configured as RTD input
AVERAGE RTD INPUTZ2 3x42034 65535,0xFFFF UINT1E6
IN OHM/10 [4x42034 B:FF FF R/O
42033
Measured average ohm value of RTDIx:65535=N/V
AVERAGE RTD INPUT3 3x42035 65535,0xFFFF UINT16
IN OHM/10 4x42035 B:FF FF R/O
142034
Measured average ohm value of RTDIx:65535=N/V

All those above registers are UINT16. But you can read the full resistor value from UINT32 registers in two

encodings:

The next register bank hold the resistor values in Ohm*100 as values between 0 and TMOhm with two commas in

UINT32 format:

AIOXRTD INPUTS
RTD INPUT1 3x41501 883118,0x000D79AE UINT32
IN OHM*100 4x41501 B:00 0D 79 AE R/O
141500
Actual measured ohm value of RTDIx:883118=8831,180hm
[Current measured RTD in Ohm*100
=(wFFFFFFFF: The channel & not configured as RTD input
RTD INPUT2 3x41503 4294967 295,0xFFFFFFFF UINT32
IN OHM*100 4x41503 B:FF FF FF FF R/O
141502
Actual measured ohm value of RTDbe-1=N/WV
RTD INPUT3 3x41505 4294967 295,0xFFFFFFFF UINT32
IN OHM*100 4x41505 B:FF FF FF FF R/O
141504
Actual measured ohm value of RTDIx:-1=N/V

The same values are stored in another register bank in UINT32R format, because there is not only one encoding
standard in MODBUS how to store 32 bit value sin 16 bit holding or input registers. See the chapter about MODBUS

encoding for more information:

AIOX:RTD. INPUTS
RTD INPUT1 3x41533 883291,0x000D7ASB UINT3Z2R
IN OHM*100 [4x41533 B:7A 5B 00 0D R/O
41532
Actual measured ohm value of RTDIx:883291=8832,910hm
[Current measured RTD in Ohm*100
=OxFFFFFFFF: The channel is not configured as RTD input
RTD INPUTZ 3x41535 4294967295,0xFFFFFFFF UINT32
IN OHM*100 14x41535 B:FF FF FF FF R/O
141534
Actual measured ohm value of RTDl-1=N/V
RTD INPUT3 3x41537 4294967295,0xFFFFFFFF UINT32
IN OHM*100 4x41537 B:FF FF FF FF R/O
|:41536
Actual measured ohm value of RTDlx-1=N/V
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 139 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same with two banks with the average resistor values:

AIOX:RTD INPUTS

AVERAGE RTD INPUTT 3x42501 0,0x00000000 UINT32
IN OHM*100 442501 B:00 00 00 00 R/O
142500
|Measured average ohm value of RTDIx:0=0,000hm
Measured average RTD in Ohm*100
=(wFFFFFFFF: The channel & not configured as RTD input
AVERAGE RTD INPUT2 3x42503 0,0x00000000 UINT32
IN OHM*100 4x42503 B:00 00 00 00 R/O
142502
|Measured average ohm value of RTDIx:0=0,000hm
AVERAGE RTD INPUT3 3x42505 0,0x00000000 UINT32
IN OHM*100 [4x42505 B:00 00 00 00 R/O
142504
|Measured average ohm value of RTDIx:0=0,000hm
AIOX.AVERAGE RTD INPUTS
AVERAGE RTD INPUT1 3x42533 0,0x00000000 UINT32R
IN OHM*100 [4x42533 B:00 00 00 00 R/O
42532
Measured average ohm value of RTDb:0=0,000hm
Measured average RTD in Ohm*100
=OxFFFFFFFF: The channel is not configured as RTD input
AVERAGE RTD INPUTZ 3x42535 0,0x00000000 UINT32
IN QHM*100 [4x42535 B:00 00 00 00 R/O
42534
Measured average ohm value of RTDIx:0=0,000hm
AVERAGE RTD INPUT3 3x42537 0,0x00000000 UINT32
IN OHM*100 1442537 B:00 00 00 00 R/Q
142536
Measured average ohm value of RTDb:0=0,000hm
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 140 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

8.34.4.9 Howto read a PT100,PT1000,NI1000-DIN43760 sensor

If an AIOX is configured to RTD SENSOR INPUT, the input will measure the current resistor value. Internally the
processor converts and linearise this resistor value and check the measurement range to create the current
temperature value, when you connect a PT100, PT1000 or NI1000-DIN43760 2-wire sensor to the AIOX input.

You can read out the actual temperature measurement with the following ASCII commands:
m GRTDISPT100C, GRTDIPT100Cx — Actual PT100 sensor temperature in °Celsius
m GRTDISPT100K, GRTDIPT100Kx — Actual PT100 sensor temperature in °Kelvin
m GRTDISPTI00F, GRTDIPT100Fx — Actual PT100 sensor temperature in °Fahrenheit

m GRTDISPT1000C, GRTDIPT1000Cx — Actual PT1000 sensor temperature in °Celsius
m GRTDISPT1000K, GRTDIPT1000Kx — Actual PT1000 sensor temperature in °Kelvin
m GRTDISPT1000F, GRTDIPT1000Fx — Actual PT1000 sensor temperature in °Fahrenheit

m GRTDISNIT000DIN43760C, GRTDINITOOODIN43760Cx — Actual NI1000 sensor temperature with DIN43760
linearisation in °Celsius

m GRTDISPT1000DIN43760K, GRTDINIT000DIN43760Kx — Actual NI1000 sensor temperature with DIN43760
linearisation in °Kelvin

m GRTDISPT1000DIN43760F, GRTDINIT000DIN43760Fx — Actual NI1000 sensor temperature with DIN43760
linearisation in °Fahrenheit

As an example here the commands to read out a PT1000 sensor in °Celsius in ASCII:
RTD. INPUTS PT1000 CELSIUS

GET RTD INPUTS ASCII #GRTDISPTI000C<CR=> ASCI
AS PT1000 CELSIUS READ Result:

COMMAND #GRTDISPTI000C <RTD1DbI> <RTD2DDIl=> . <RTD160DI> <CR>

X #255,GRTDISPTI000C <CR>

RX

[Actual measured RTD input as PT1000 on 101:9999.930°C
Actual measured RTD input as PT1000 on 102:9999.990°C
Actual measured RTD input as PT1000 on 103:9999.990°C
Actual measured RTD input as PT1000 on 104:9999.990°C
Actual measured RTD input as PT1000 on 105:9999.990°C
Actual measured RTD input as PT1000 on 106:9999.990°C
Actual measured RTD input as PT1000 on 107:9999.990°C
(Actual measured RTD input as PT1000 on 108:9999.990°C
Actual measured RTD input as PT1000 on 109:9999.990°C
Actual measured RTD input as PT1000 on 1010:9999.990°C
Actual measured RTD input as PT1000 on 1011:9999.990°C
Actual measured RTD input as PT1000 on 1012:9999.990°C
Actual measured RTD input as PT1000 on 1013:9999.990°C
IActual measured RTD input as PT1000 on 1014:9999.990°C
Actual measured RTD input as PT1000 on 1015:9999.990°C
Actual measured RTD input as PT1000 on 1016:9999.990°C
This command shows for RTD INPUT 105 the actual measured RTD value linearized as PTI00 sensor in “Celisus

99%.990; Temperature is lower than 50°C
+999.990: Temperature is higher than 130°
All 105 with a different usage type will return S

999.990 to indicate, that no measurement is done.

(GET RTD INPUT ASCI #GRTDIPTI000C <IONR> <CR> ASCI
AS PT1000 CELSIUS READ Result:

COMMAND #GRTDIPTI000C<IONR>: <10xDbl> <CR>

IONR 3

TX #255 GRTDIPT1000C3<CR>

RX —
| Actual measured RTD input as PT1000 on 103:9999.990°C

This command shows for RTD INPUT IO <IONR> the actual measured RTD value linearized as PT100 sensor in “Celisus
: Temperature is lower than 50°C

+0%3 990; Temperature is higher than 130°C

Al 105 with a different usage type will return 9999,990 to indicate, that no measurement is done

You can read out also an average temperature with the following ASCII commands. The average is calculated from
the sum of the last 100 measurements:

m GAVGRTDISPT100C, GAVGRTDIPT100Cx — Actual PT100 sensor temperature in °Celsius

B GAVGRTDISPTI00K, GAVGRTDIPT100Kx — Actual PT100 sensor temperature in °Kelvin

m GAVGRTDISPT100F, GAVGRTDIPT100Fx — Actual PT100 sensor temperature in °Fahrenheit

B GAVGRTDISPT1000C, GAVGRTDIPT1000Cx — Actual PT1000 sensor temperature in °Celsius
m GAVGRTDISPT1000K, GAVGRTDIPT1000Kx — Actual PT1000 sensor temperature in °Kelvin
m GAVGRTDISPT1000F, GAVGRTDIPT1000Fx — Actual PT1000 sensor temperature in °Fahrenheit

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 147 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 142 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

m GAVGRTDISNIT000DIN43760C, GAVGRTDINIT000DIN43760Cx — Actual NI000 sensor temperature with
DIN43760 linearisation in °Celsius

m GAVGRTDISPT1000DIN43760K, GAVGRTDINIO00DIN43760Kx — Actual NI1000 sensor temperature with
DIN43760 linearisation in °Kelvin

m GAVGRTDISPT1000DIN43760F, GAVGRTDINIT000DIN43760Fx — Actual NI1000 sensor temperature with
DIN43760 linearisation in °Fahrenheit

As an example here the commands to read out the average value of a NIT1000-DIN43760 sensor in °Celsius in ASCII:

(GET AVERAGE RTD INPUTS SCIl #GAVGRTDISNNOOODINAITEQC <CR> ASCI
AS NINOOO DIN43760 CELSIUS READ Result:
COMMAND #GAVGRTDISNIT000DINA3760C: <RTD1DbI>, <RTDZ2DbI>,... <RTD160bl> <CR>
TX 255,GAVGRTDISNIT000DIN43760C<CR>
RX
Average measured RTD input as NI1000-DIN43760 on 101:9999.990°C
Average measured RTD input as NI1000-DIN43760 on 102:9999.990°C
JAverage measured RTD input as NN000-DIN43760 on 103:9999.990°C
JAverage measured RTD input as NN000-DIN43760 on 104:9989.990°C
JAverage measured RTD input as NI000-DIN43760 on 105:9999.990°C
Average measured RTD input as NI1000-DIN43760 on 106:9999.990°C
Average measured RTD input as NI1000-DIN43760 on 107:9999.990°C
Average measured RTD input as NI1000-DIN43760 on 108:9999.990°C
Average measured RTD input as NI1000-DIN43760 on 109:9999.990°C
Average measured RTD input as MI1000-DIN43760 on 1010:9999.990°C
Average measured RTD input as NI1000-DIN43760 on IO11: .990°C
Average measured RTD input as NI1000-DIN43760 on 1012: .990°C
Average measured RTD input as NI1000-DIN43760 on IO13: .990°C
[Average measured RTD input as NI1000-DIN43760 on 1014:9999.990°C
[Average measured RTD input as NI000-DIN43760 on 1015:9999.990°C
Average measured RTD input as NI1000-DIN43760 on 1016:9999.990°C
[This command shows for RTD INPUT 10s the average measured RTD value linearized as PTI00 sensor in *Celisus B _-
999.990: Temperature is lower than 50°C
+9%9.990: Temperature is higher than 130°C
Al 10s with a different usage type will return 9999.990 to indicate, that no measurement is done.
GET AVG RTD INPUT Cll #GAVGRTDINIO00DINA3760C <IONR> <CR> ASCII
AS NIN000 DIN43760 CELSIUS READ Result:
COMMAND #GAVGRTDINITO00DINA3T60C <IONR > :<10OxDbl> <CR>
IONR 16
|TX <CR>
RX
|> Average measured RTD input as NI1000-DIN43760 on 1016:9999.990°C
This command shows for RTD INPUT 1O <IONR> the average measured RTD value linearized as PTI00 sensor in "Celisus
999 990: Temperature is lower than 50°C
+999.990; Temperature is higher than 130°C
Al 10s with a different usage type will return 9999.990 to indicate, that no measurement is done,

But you can read the PT100, PT1000 and NI1000-DI43760 sensors also via MODBUS registers. You will find tables for
reading the sensors in CELSIUS, FAHRENHEIT or KELVIN. As an example here we show the table for PT100 readout

in °Celsius:
IAIOX:RTD INPUTS PT100 CELSIUS

RTD INPUT1 3x41049 -32768,0x8000 SINT16
AS PT100 IN CELSIUS 1049 B:80 00 R/O
1:41048

Actual measured PT100 temperature RTDIx:-32768=N/V
[Current measured RTD sensor value linearized as PT100 sensor in Celsius*100 in the range of -5000 to +13000 for -50.0 to +130.0 *C
-32766,0x8002; Measured value is below -50°C

-32767.0x8001: Measured value is above +130°C
-32768,0:B000; The channel is not configured as RTD input

RTD INPUTZ 3x41050 -32768,0x8000 SINT16
AS PT100 IN CELSIUS 4x41050 B:80 00 R/Q
1:41049

Actual measured PT100 temperature RTDIx:-32768=N/V

Again you can also read the average value for one sensor:

1 11000-DIN43760 KELVIN
AVERAGE RTD INPUT1 3%42129 65535,0xFFFF LINT16
AS NINO00-DINA3TE0 IN KELVIN 4xd 2129 B:FF FF R/O
42128
Measured average NIT000-DIN43760 temperature RTDIx:65535=655,35°K

Average value of measured RTD sensor linearized as NN000-DIN43760 sensor in Kelvin®100 in the range of 22315 to 40315 for 223.15 to 403.15 °K
55533, 0xFFFD: Measured value is below 223 15°K

65534, 0xFFFE: Measured value is above 403,157

65535, 0xFFFF: The channel is not configured as RTD input

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 143 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

8.3.4410 Howto set output values for INIT & IO WATCHDOG

If an AIOX is configured as an output, you can set a start up value, which is stored in the FRAM. This value will be
used as an init value after a power-on and outputted on the voltage or current outputs. Also this value will be
outputted if you have set a IO watchdog and the ASCIl and MODBUS communication meet the defined watchdog
timeout. So you can bring your external devices into a defined state.

Take the ASCII commands SCFGOVS to define for all analog outputs a startup value or use SCFGOVx to set a
specific output value. The new value is stored in the FRAM:

SET CONFIG OUTPUT VALUES ASCI #SCFGOVS:<I01CfgValDbl >, <102CfgValDbl>, <I03CfgValDbl>, <|04CfgValDbl =, <I05CfgValDbl >, <10 ASCII YES
WRITE 6CfgValDbl>, <IO7CfgValDbl>, <I08CfgValDbl>, <I09CfgValDbl>, <I010CTgValDbl>, <|O1CfgValDbl >, <
ICOMMAND I012CfgValDbl>, <1013CfgValDbl>, <1014 fgValDbl >, <1015CfgValDbl>, <|016CfgValDbl> <CR>
Result:
H#OK<CR
I01Value 000
102Value 000
[03Value 000
104Value 000
105Value 000
106Value ,000
107 Value 000
108Value 000
109Value 000
1010Value 000
|OT1Value 000
1012Value 000
|013Value 000
|O14Value 000
1015Value 000
1016Value 000
IS 255,5CFGOVS:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0<CR>
This command sets for all outputs the standard value in Volt or in mA, which are used when the contreller is restartet or performing a watchdog reset and the channel is used as voltage output or current cutput.
For voltage outputs the range is 0 to 11,0V,
For current outputs the range is 0 to 25ma
SET CONFIG OUTPUT VALUEX ASCI #SCFGOV <IONR > <1OxCfgValueDbl= <CR> ASCI YES
WRITE Result:
COMMAND #OK<CR>
IONR 16
|OxCfgValue 000
-rx
RX m
is command sets for one outputs the standard value Tn Volt or in mA, which is used when the controller is restartet and the channel is used as voltage output or current output.
For voltage outputs the range is 0 to 11,0V,
For current outputs the range is 0 to 25mA.

You can read the current settings with GCFGOVS and GCFGOVx:

(GET CONFIG OUTPUT VALUES ASCI #GCFGOVS<CR> ASCI
READ Result:
COMMAND [#GCFEOVS <IQVoltiDbl> <|OVolt2Dbl>,_ <IOVolt16Dbl> <CR>
™ WS <CR>
RX

Actual config value on 101:0.00V or mA
Actual config value on 102:999.99V or mA
Actual config value on 103:999.99V or mA
Actual config value on 104:999.99V or mA
Actual config value on 105:999.99V or mA
Actual config value on 106:999.99Y or mA
Actual config value on 107:999.99V or mA
(Actual config value on 108:999.99V or mA
Actual config value on 109:399.99V or mA
iActual config value on 1010:999.99V or mé4
Actual config value on 1011:999.99V or mA
Actual config value on 1012:999.99V or mA
Actual config value on 1013:999.99V or mA
Actual config value on 1014:999.99V or mA
Actual config value on 1015:999.99V or mA
Actual config value on 1016:999.99 or mA
This command shows for all channels the current saved startup values for use as voltage or current outputs

For voltage outputs the range is 0 to 11,0V,
[For current outputs the range is 0 to 25ma.

LA 105 with a different usage type wall return 599,99,

GET CONFIG OUTPUT VALUE ASCI #GCFGOV<IONR> <CR> ASCI
READ Result:
COMMAND #GCFGOV <|ONR > <|OxValueDbl> <CR>
IONR 1
X 2 Fi <CR>
RX

al config value on 101:0.00V or mA
This command shows for ane channel the current saved startup value for use as voltage or current output

For voltage outputs the range is 0 to 1,0V,

For current outputs the range is 0 to 25mA.

Al IO with a different usage type will return $99.54,

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 144 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can read and write this values also via MODBUS holding registers:

(CONFIG OUTPUT VALUE AICX1 3x44001 100,0x0064 100 1 UINT16 YES
Ax44001 B:00 64 RAW
1:44000
Actual config value for AlOx:1,00 V or mA ENTER NEW CONFIG VALUE FOR AlOx

This command sets for all outputs the standard value in Volt*100 or in ma*
For voltage outputs the range is 0 to 1100 {0 to 11,0v),

For current outputs the range is 0 to 2500 (0 to 25mA).

All 105 with a different usage type will return 65535, 0xFFFF

100, which are used when the controller is restartet or a watchdog condition has occured and the channel is used as voltage output or current output.

COMFIG OUTPUT VALUE AIOX2 3x44002 200,0x00C8 200 2 UINTI6 YES
AxdA002 B:00 C8 RAW
144001
Actual config value for AIOx:2.00 V or mA EMNTER NEW CONFIG VALUE FOR AlOx
(CONFIG OUTPUT VALUE AIOX3 3144003 300,0x012C 300 3 UINTI6 YES
14x44003 B:n 2C RAW
144002
Actual config value for AlOx:3,00 V or mA ENTER NEW CONFIG VALUE FOR AlOx
RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 145 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

834411 Howto detect status & diagnostic of AIOX hardware

The communication between the AIOX hardware and the main ARM co-processor is done via serial interface. Whit
this command you can check if this internal connection is ok or not. If not, this highlights a severe hardware
problem!

INTER PROCESSOR COMMUNICATION

AIOX IS ONLINE ASCII #G16AIOXISONLINE <CR> ASCI
READ Result
CO| k:d . Mo><CR>
X 255,G16AIOXISONLINE <CR>

RX
| Actual communication state co-processor to AIOX processor:YES
[This command returns the actual state of the serial communication between the ARM co-processor and the additional processor for the AIOX
[YES: Currently the communication is fine
MO: There is a mayor problem/hardware fault between the two processors

You can check this status also with this MODBUS register:
INTER PROCESSOR COMMUNICATION

AIOX 15 ONLINE 3x50000 1.0x0001 UINTIE
4x50000 B:00 01 R/O
149999
Actual communication status co-processor to AIOX processor.OK

This cammand returns the actual state of the serial communication between the ARM co-processor and the additional processor for the AIOX.
=T Currently the communication is fine
=0: There is a mayor problem/hardware fault between the two processors

Every AIOX chip controls 4 AIOX inputs or outputs. Depending on the amount of AIOX you have in your controller
(4/8 or 16), you can check the SPI communication status between the AIOX processor and the chips with the ASCII
commands ARECHIPSONLINE or ISCHIPONLINEXx:

CHIP COMMUNICATION
ARE CHIPS OMLINE SCll #ARECHIPSONLINE<CR> ASCI
READ Result:
COMMAND #OK<CR>
X 255 ARECHIPSONLINE<CR>
RX

Actual state of CHIP1:1
Actual state of CHIP2:
Actual state of CHIP3:
Actual state of CHIP4:
[This command shows the current SPI communication status with each chip.

=0 Currently there is a SPI error in the communication and the chip is offline

=1: The 5P| communication with the chip is ok

IS CHIPx ONLINE IASCII #|SCHIPONLINE <CHIPNR > <CR> ASCl
READ Result:
COMMAND #0OK<CR>
CHIPNR 1
TX 255, ISCHIPONLINE1<CR>
RX
| Actual state of CHIP1:1

[This command shows the current SPI communication status with chip <CHIPNR=.
=0 Currently there is a SP1 error in the communication and the chip is offline
1: The 5P| communication with the chip is ok

The same information for every chip can be read back with the MODBUS registers:

IAIOX ONLINE

IS ONLINE CHIP 1 3x43041 1,0x0001 UINTIE
4x43041 B:00 01 R/C
43040

ls CHIPx online:1=YES

This command shows the acutal state of the internal communication state machine far CHIPx

IS ONLINE CHIP 2 3x43042 1,0x0001 UINT16
1%43042 8:00 01 R/O
1:43041
Is CHIPx online1=YES
IS ONLIME CHIP 3 3x43043 1,0x0001 UINT1E
4x43043 B:00 M R/O
143042
Is CHIPx online:1=YES
1S ONLINE CHIP 4 43044 1,.0x0001 UINT16
4x43044 B:00 01 R/O
143043

Is CHIPx online:1=YES

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 146 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

Every AIOX chip has also some diagnostic information, which you can use to detect the health status of the AIOX.
use GALSTATES or GLSTATEx command:

CHIP STATUS
(GET ALL LIVE STATES ASCI #GALSTATES<CR> ASCII
READ Result:
COMMAND #OK<CR>
LS [#255,GALSTATES <CR>
RX

Actual live state of CHIP1:30720,0x7800
Actual live state of CHIP2:28672,0x7000
Actual live state of CHIP3:26624,0x6800

Actual live state of CHIP4:27648,0x6C00

Returns the actual chip status of all chips.

[Each result bit stands for a different state:

Bit O VI_ERR_CURR_A: Status of channel A:Voltage or current error detected on Channel A This bit is interpreted differently depending on which of the following IO function selected:
[Voltage output: short-circuit error. The error condition is debounced for 2 ms before the status bit is set.

[Current output: open dreuit error. The error condition is debounced for 2 ms before the status bit is set.

(Current input, loop powered: short-circuit error. A short to ground is detected

[Current input, externally powered: short-circuit error. A current source =25 mA is detected

Bit 1: VI_ERR_CURR_B: Status of voltage input B. Same like VI_ERR_CURR_A

Bit 2: VI_ERR_CURR_C: Status of voltage input C. Same like VI_ERR_CURR_A

Bit 3: VI_ERR_CURR_D: Status of voltage input D, Same like VI_ERR_CURR_A

Bit 4: HI_TEMP_STATUS: If the die temperature is typically at or above 115°C, the HI_TEMP_STATUS bit & asserted

Bit 5: CHARGE_PUMP_STATUS: Charge pump error detected.

Bit & ALDOSV_STATUS: ALDOSY Power Supply Monitor Error. This bit is asserted when the ALDOSV pin falls below 4.05 V. Usually ~5v.

Bit 7: AVDD_STATUS: AVDD Power Supply Monitor Error, This bit is asserted when the AVDD pin falls below 9.26 V. Usually ~17V.

Bit 8: DVCC_STATUS: DVCC Power Supply Monitor Error. This bit is asserted when the DVCC pin falls below 193 V. Usually -3 .3V

Bit & ALDOTVE_STATUS: ALDOIVE Power Supply Monitor Error. This bit is asserted when the ALDOTVE pin falls below 1.35 V. Usually ~18V

Bit 10-12: ADC_CH_CURR: Current converted channel of the ADC (0:A, 1:8, 2.C, 3D, 4:Diagnostic 0, 5:Diagnostic 1, &:Diagnostic 2, 7:Diagnostic 3)

Bit 13: ADC_BUSY: ADC busy status bit

Bit 14: ADC_DATA_RDY-ADC data ready. The ADC_DATA_RDY bit asserts when a comversion cycle has completed. The bit stays asserted until a user writes 110 clear the bit. In single conversion made, the ADC_RDY pin follows the
IADC_DATA_RDY bit and only deasserts when the ADC_DATA_RDY bit is cleared. In continuous conversion mode, the ADC_RDY pin returns high after 24 ps,
Bit 15 RESERVED: Reserved

GET LIVE STATE Cll #GLSTATE<CHIPNR> <CR> ASCII
READ Result:
COMMAND #OK<CR>
CHIPNR
™ [#255, GLSTATE4 <CR>
RX

(Actual live state of CHIP4:26624, 0x6800
Live state bit 0: VI_ERR_CURR_A.0
Live state bit 1: VI_ERR_CURR_B:0
Live state bit 2: VI_ERR_CURR_C:0

Live state bit 3: VI_ERR_CURR_D:0

Live state bit 4: HI TEMP_STATUS:.0

ve state bit 5: CHARGE_PUMP_STATUS:0
ve state bit 6: ALDOSV_STATUS:0

ive state bit 7. AVDD_STATUS:.0

ive state bit 8: DVCC_STATUS:0
ive state bit 9: ALDOTVE_STATUS.0

ve state bit 13: ADC_BUSY:1
ve state bit 14: ADC_DATA_RDY.0
5: RESERVED:0

Li
L
L
L
Live state bit 10-12: ADC_CH_CURR:2
L
Li
L

ve state bit

Returns the actual chip status of chip <CHIPNR>

Each result bat stands for a different state:

Bit O VI_ERR_CURR_A: Status of channel A'Voltage or current error detected an Channel A This bit is interpreted differently depending on which of the following 10 function selected;
Voltage output; short-circuit error, The arror condition is debounced for 2 ms before the status bit is set,

[Current cutput: open drcuit error, The error condition is debounced for 2 ms before the status bit is set.

[Current input, loop powered: shor-circuit errar. A short to ground is detected

[Current input, externally powered: short-circuit error. A current source »25 ma is detected

Bit 1: VI_ERR_CURR_B: Status of voltage input B. Same like VI_ERR_CURR_A

Bit 2: VI_ERR_CURR_C: Status of voltage input C. 5ame like VI_ERR_CURR_A

Bit 3: VI_ERR_CURR_D: Status of voltage input D. Same like VI_ERR_CURR_A

Bit 4: HI_TEMP_STATUS: If the die temperature is typically at or above 115°C, the HI_TEMP_STATUS bit is asserted

Bit 5: CHARGE_PUMP_STATUS: Charge pump error detected,

Bit &: ALDOSV_STATUS: ALDOSY Power Supply Monitor Errar. This bit is asserted when the ALDOSV pin falls below 4.05 V. Usually ~5V.

Bit 7: AVDD_STATUS: AVDD Power Supply Monitar Error. This bit is asserted when the AVDD pin falls below 9.26 V. Usually ~17v.

Bit 8: DVCC_STATUS: DVCC Power Supply Monitor Error. This bit is asserted when the DVCC pin falls below 1.93 V. Usually ~3.3V,

Bit & ALDOTVE_STATUS: ALDOWE Power Supply Monitor Errar, This bit is asserted when the ALDOTVE pin falls below 135 V. Usually ~18V

Bit 10-12: ADC_CH_CURR: Current converted channel of the ADC (0:A, 1.8, 2.C, 3.0, 4:Diagnostic 0, 5:Diagnostic 1, 6:Diagnostic 2, 7-Diagnostic 3)

Bit 13- ADC_BUSY: ADC busy status bit.

Bit 14: ADC_DATA_RDY-ADC data ready. The ADC_DATA_RDY bit asserts when a conversion cycle has completed. The bit stays asserted until 3 user writes 1to clear the bit. In single conversion mode, the ADC_RDY pin follows the
ADC_DATA_RDY bit and only deasserts when the ADC_DATA_RDY bit is cleared. In continuous conversion mode, the ADC_RDY pin returns high after 24 ps,
Bit 15: RESERVED: Reserved

RES| Informatik & Automation GmbH RESI-T4/C4 10T Controller 147 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same information you can read with this MODBUS registers:

JAIOX CHIP. STATUS

LIVE STATUS CHIP 1 3x43025 24576,0x6000 UINT16
4x43025 B:60 00 R/O
143024
Actual live status of CHIPx6000

[Current live status for CHIPx. Each CHIP supports 4 AIOX channels,

[Each result bit stands for a different state:

Bit 0: VI_ERR_CURR_A: Status of channel AVoltage or current error detected on Channel A, This bit is interpreted differently depending on which of the following IO function selected:
[Voltage output: short-circuit error. The error condition is debounced for 2 ms before the status bit is set.

[Current output: open drcuit error. The error condition is debounced for 2 ms before the status bit is set

[Current input, loop powered: short-circuit error. A short to ground is detected

[Current input, externally powered: short-circuit error. A current source >25 mA is detected

Bit 1: VILERR_CURR_B: Status of voltage input B. Same like VILERR_CURR_A

Bit 2: VI_ERR_CURR_C: Status of voltage input C. Same like VI_ERR_CURR_A

Bit 3: VI_ERR_CURR_D: Status of voltage input D. Same like VI_ERR_CURR_A.

Bit 4: HI_TEMP_STATUS: If the die temperature is typically at or above T15°C, the HI_TEMP_STATUS bit is asserted

Bit 5: CHARGE_PUMP_STATUS: Charge pump error detected.

Bit 6: ALDOSV_STATUS: ALDOSY Power Supply Monitor Error, This bit is asserted when the ALDOSV pin falls below 4,05 V. Usually -5V,

Bit 7: AVDD_STATUS: AVDD Power Supply Monitor Error. This bit is asserted when the AVDD pin falls below 2.26 V. Usually ~1TV.

Bit 8: DVCC_STATUS: DVCC Power Supply Monitor Error, This bit s asserted when the DVCC pin falls below 193 V. Usually ~3.3V,

Bit 9: ALDOVE_STATUS: ALDO1VE Power Supply Monitor Error, This bit is asserted when the ALDOIWVE pin falls below 135 ¥, Usually ~18V.

Bit 10-12: ADC_CH_CURR: Current converted channel of the ADC (O:A, 1.8, 2:C, 3:0, 4Diagnostic 0, 5:Diagnostic 1, &:Diagnostic 2, 7-Diagnostic 3)

Bit 13: ADC_BUSY: ADC busy status bit

Bit 14: ADC_DATA_RDY-ADC data ready. The ADC_DATA_RDY bit asserts when a conversion cycle has completed. The bit stays asserted until a user writes 1 to clear the bit. In single conversion mode, the ADC_RDY pin follows the
[ADC_DATA_RDY bit and only deasserts when the ADC_DATA_RDY bit is cleared, In contmuous conversion mode, the ADC_RDY pin returns high after 24 ps
Bit 15: RESERVED: Reserved

LIVE STATUS CHIP 2 3xd3026 28672,0:7000 UINT16
4xd3026 B:70 00 R/O
43025
Actual live status of CHIPx7000
LIVE STATUS CHIP 3 3x43027 29696,0x7400 UINT16
Axd3027 B:74 00 R/C
143026
(Actual live status of CHIPx:7400
LIVE STATUS CHIP 4 3x43028 25600,0:6400 UINT16
4xd 3028 B:64 00 R/O
43027

Actual live status of CHIPx:6400

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 148 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.12

RES/

Howto check temperature & supply voltages of AIOX hardware

The AIOX chips deliver two supply voltage measurements and measure the internal temperature of the AIOX chips.
We deliver versions with 1, 2 or 4 AIOX chips to offer 4, 8 or 16 AIOX channels. For a stable operation, this values

should be under 80°C. If not, you have to coll your switchboard cabinet.

To read the current chip temperatures use this ASCIl commands GCHIPTEMPS or GCHIPTEMPx. To read the average
value use GAVGCHIPTEMPS or GAVGCHIPTEMPx:

GET CHIP TEMPERATURES ASCI #GCHIPTEMPS<CR> ASCI
READ Result:
ICOMMAND #OK<CR>
X 255,GCHIPTEMPS <CR>
RX
iActual temperature of CHIP1:53.30°C
Actual temperature of CHIP2:51.51°C
Actual temperature of CHIP3:52.40°C
Actual temperature of CHIP4:52.63°C
This command returrs for every AIOX chip the actual chip termperature in *C
GET CHIP TEMPERATURE ASCI #GCHIPTEMP <CHIPNR> <CR> ASCII
READ Result:
COMMAND #OK<CR>
CHIPNR L
™ 255, GCHIPTEMP1<CR>
RX
Actual temperature of CHIP1:53.30°C
This command returns for AIOX chip <CHIPNR > the actual chip temperature in *C
WERAGE CHIP TEMPERATURES
(GET AVERAGE CHIP ASCIl H#GAVGCHIPTEMPS <CR> ASCI
TEMPERATURES READ Result:
ICOMMAND #OK<CR>
IS 255,GAVGCHIPTEMPS <CR>
RX
Average temperature of CHIP1:53.18°C
[Average temperature of CHIP2:51.56°C
Average temperature of CHIP3:52.39°C
Average termperature of CHIP4:52.65°C
This command returrs for every AIOX chip the average chip temperature in *C
(GET AVERAGE CHIP ASCI #GAVGCHIPTEMP <CHIPMR > <CR> ASCI
TEMPERATURE READ Result:
COMMAND #0OK<CR>
ICHIPNR 1
™ 255, GAVGCHIPTEMP1<CR>
RX
verage temperature of CHIP1:53.18°C
This command returns for AIOX chip <CHIPNR= the average chip temperature in *C
The same values can be read via MODBUS with this registers:
|AIOX CHIP TEMPERATURE
TEMPERATURE CHIP 1 3x43001 443,0x01BB UINT1E
IN CELSIUS 4x43001 B:01BB R/O
1:43000
Actual measured temperature of CHIPx:44,3°C
[Current measured chip temperature for CHIPx in x*10 *C. Each CHIP supports 4 AIOX channels.
TEMPERATURE CHIP 2 3x43002 456,0x01C8 UINT16
IN CELSIUS 4x43002 B:.01C8 R/O
1:43001
Actual measured temperature of CHIPx:45,6°C
TEMPERATURE CHIP 3 3x43003 440,0x0168 UINT16
IN CELSIUS 43003 B:01 B8 R/O
1:43002
Actual measured temperature of CHIPx:44,0°C
TEMPERATURE CHIP 4 3x43004 453,0x01C5 UINT16
IN CELSIUS Ax43004 B:01C5 R/O
1:43003
Actual measured temperature of CHIPx:45,3°C
ERATURE
AVERAGE TEMPERATURE CHIP 1 3x43005 443,0x01BB UINTIE
IN CELSIUS 4x43005 B:01B8 R/O
1:43004
Measured average temperature of CHIPx:44,3°C
Measured average chip temperature for CHIPx in x*10 *C. Each CHIP supports 4 AIOX channels,
AVERAGE TEMPERATURE CHIP 2 3%43006 456,0x01C8 UINT16
IN CELSIUS 4x43006 BO1CB R/O
1:43005
Measured average temperature of CHIPx:45,6°C
AVERAGE TEMPERATURE CHIP 3 3x43007 439,0x0187 UINT16
IN CELSIUS 443007 B:0187 R/O
143006
Measured average temperature of CHIPx:43,9°C
AVERAGE TEMPERATURE CHIP 4 3x43008 452,0x01C4 UINT16
IN CELSIUS 4x43008 B:01C4 R/O
143007
Measured average temperature of CHIPx:45.2°C
RESI Informatik & Automation GmbH RESI-T4/C4 loT Controller 149 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

You can also check the AIOX chip supply voltage and the AIOX ground voltage. If the supply voltage drops under
14.5V you have a severe hardware issue or a cabling issue. If the ground voltage is not 0, you have an issue in your
cabling or in the internal hardware too.

With the ASCII commands GVADDS and GVADDx you can read the current supply voltage. The average values can
be read with GAVGVADDS and GAVGVADDX:

CHIP_SUPPLY VOLTAGES
(GET SUPPLY VOLTAGES ASCIl #GVAVDDS<CR> ASCII
READ Result:
COMMAND #OK<CR>
X 255,GVAVDDS<CR>
RX

iActual supply voltage of CHIP1:14.66V
[Actual supply voltage of CHIP2:14.66V
Actual supply voltage of CHIP3:14.66Y
Actual supply voltage of CHIP4:14.65V

This command returns for every AIDX chip the actual supply voltage in Volts
This must be =14.5V, if not, there is a severe wiring or ather hardware issue!

GET SUPPLY VOLTAGE ASCI #GVAVDD<CHIPNR> <CR> ASCI
READ Result:
COMMAND #OK<CR>
CHIPNR 1
™ 255,GVAVDD1<CR>
RX

Actual supply voltage of CHIPT:14.66V
This command returns for AIOX chip <CHIPMR> the actual supply voltage in Volts.
This must be >14.5V, if not, there is a severe wiring or other hardware issue!

AVERAGE CHIP. SUPPLY. VOLTAGES

GET AVERAGE ASCII #GAVGVAVDDS <CR> ASCII
SUPPLY VOLTAGES READ Result:

COMMAND #OK<CR>

™ 255,GAVGVAVDDS <CR>

RX

[Average supply voltage of CHIP1:14.66V
[Average supply voltage of CHIP2:14.66V
(Average supply voltage of CHIP3:14.66V

Average supply voltage of CHIP4:14.64V
This command returns for every AIOX chip the average supply voltage in Volts.
This must be =14.5V, if nat, there is a severe wiring or other hardware issue!

GET AVERAGE ASCI #GAVGVAVDD<CHIPNR> <CR> ASCI
SUPPLY WVOLTAGE READ Result:

COMMAND #OK<CR>

ICHIPNR 1

X 255, GAVGVAVDD1<CR>

RX

verage supply voltage of CHIP1:14,66V
[This command returns for AIOX chip <CHIPMNR> the average supply voltage in Volts.
This must be »14.5V, if not, there is a severe wiring or other hardware issue!

Here are the MODBUS registers for the same measurements of the supply voltage:

|AIOX CHIP. VOLTAGES
\avdd CHIP 1 3x43009 147,0x0093 UINTI6
IN VOLT 14x43009 B:00 93 R/O
1:43008
Actual measured voltage Vavdd of CHIPx:14,7V
RESI Informatik & Automation GmbH RESI-T4/C4 |oT Controller 150 von 153

© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Current measured voltage Vavdd for CHIPx in x*10 Volts. Each CHIP supports 4 AIOX channels.
[This must be =14.5V, if not, there is a severe wifing or other hardware issue!

Vavdd CHIP 2 3x43010 147,0x0093 UINT16
IN VOLT 43010 B:00 93 R/O
1:43009
Actual measured voltage Vavdd of CHIPx:14,7V
Vavdd CHIP 3 3x430M 147,0x0093 UINT16
IN VOLT 14x430M1 B:0093 R/C
143010
Actual measured voltage Vavdd of CHIPx:14,7V
Vavdd CHIP 4 3x43012 147,0x0093 UINT16
IN VOLT 13012 B:00 93 R/O
143011
Actual measured voltage Vavdd of CHIPx:14,7V
JAIOX CHIP VOLTAGES
AVERAGE Vavdd CHIP 1 3x43013 147,0x0093 UINTI6
IN VOLT 4x43013 B:00 93 R/O

143012

Measured average voltage Vavdd of CHIPx:14,7V

[Current measured voltage Vavdd for CHIPx in x*10 Volts. Each CHIP supports 4 AIOX channels.
This must be >14.5V, if not, there is a severe wiring or other hardware issue!

AVERAGE Vavdd CHIP 2 3x43014 147,0x0093 UINTI6
IN VOLT 4x43014 B:00 93 R/O
143013
Measured average voltage Vavdd of CHIPx:14,7V
AVERAGE Vavdd CHIP 3 3x43015 147,0x0093 UINT16
IN VOLT Ax43015 B:00 93 R/C
143014
Measured average voltage Vavdd of CHIPx:14,7V
AVERAGE Vavdd CHIP 4 x43016 147,0x0093 UINT16
IN VOLT 14x43016 B:00 93 R/O
143015

Measured average voltage Vavdd of CHIPx:14,7V

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 157 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RES/

For the ground voltage measurement you have the ASCIl commands GVAGNDS and GVAGNDx. Again for the
average values use GAVGVAGNDS or GAVGVAGNDx:

CHIP GROUND VOLTAGES
(GET GROUND VOLTAGES ASCIl #GVAGNDS<CR> ASCII
READ Result:
COMMAND #0K<CR>
X 255,GVAGNDS <CR>
RX

Actual ground voltage of CHIP1.0.00v
iActual ground voltage of CHIP2:0.00V
iActual ground voltage of CHIP3:0.00V
iActual ground voltage of CHIP4:0.00V

This command returns for every AIOX chip the actual ground voltage in Volis
[This must be 0, if not, there is a severe wiring or ather hardware issue!

(GET GROUND VOLTAGE ASCI #GVAGND <CHIPNR> <CR> ASCII
READ Result:
COMMAND #0OK<CR>
CHIPNR i
X 255,GVAGND1<CR>
RX

Actual ground voltage of CHIP1:0.00V
This command returns for AIOX chip <CHIPNR> the actual ground voltage in Valts
This must be 0, if not, there is a severe winng or other hardware issue!

IAVERAGE CHIP. GROUND VOLTAGES

GET AVERAGE ASCI #GAVGVAGNDS <CR> ASCII
(GROUND VOLTAGES READ Result:

COMMAND #OK<CR>

X 255.GAVGVAGNDS <CR>

RX

Average ground voltage of CHIP1.0.00V
Average ground voltage of CHIP2:0.00V
Average ground voltage of CHIP3:0.00V
Average ground voltage of CHIP4:0.00V

This command returns for every AIOX chip the average ground voltage in Volts,
[This must be 0, if not, there is a severa wiring or other hardware issue!

GET AVERAGE ASCIl #GAVGVAGND <CHIPNR> <CR> ASCII
(GROUND VOLTAGE READ Result:

COMMAND #OK<CR>

CHIPNR 1

™ 255,GAVGVAGND1<CR>

RX

Average ground voltage of CHIP1:0.00V
[This command returns for AIOX chip <CHIPNR> the average ground voltage in Velts,
[This must be 0, if not, there is a severe wiring or cther hardware issue!

Again on the MODBUS side take this registers:

\AIOX CHIP VOLTAGES
Vagnd CHIP 1 3x43017 0,0x0000 UINT16
IN VOLT 443017 B:00 00 R/O

143016

Actual measured voltage Vagnd of CHIPx.0,0V
(Current measured voltage Vagnd for CHIPx in x*10 Volts, Each CHIP supports 4 AIOX channels.
[This must be OV, if not, there is a severe wiring or other hardware issue!

Vagnd CHIP 2 3x43018 0,0x0000 UINT16
IN VOLT 14x43018 B:00 00 R/C
143017
Actual measured voltage Vagnd of CHIPx.0,0V
Vagnd CHIP 3 3x43019 0,0x0000 UINT16
IN VOLT 143019 B:00 00 R/O
143018
Actual measured voltage Vagnd of CHIPx0.0v
Vagnd CHIP 4 3x43020 0,0x0000 UINT16
IN VOLT 4xd3020 B:00 00 R/O
LA3019
Actual measured voltage Vagnd of CHIPx.0,0V
JAIOX CHIP. VOLTAGES
AVERAGE Vagnd CHIP 1 3x43021 0,0x0000 UINT16
IN VOLT 4%43021 B:00 00 R/C

143020

Measured average voltage Vagnd of CHIPx:0.0v
(Current measured voltage Vagnd for CHIPx in x*10 Volts. Each CHIP supports 4 AIOX channels.
This must be OV, if not, there is a severe wiring or other hardware issue!

AVERAGE Vagnd CHIP 2 343022 0,0x0000 UINT16
IN VOLT 4xd43022 B:00 00 R/O
1:43021
Measured average voltage Vagnd of CHIPx:0,0V
AVERAGE Vagnd CHIP 3 3143023 0,0x0000 UINT16
IN VOLT Ax43023 B:00 00 R/O
1:43022
Measured average voltage Vagnd of CHIPx:0.0v
AVERAGE Vagnd CHIP 4 3x43024 0,0x0000 UINT16
IN VOLT 143024 B:00 00 R/O
143023

Measured average voltage Vagnd of CHIPx:0,0V

RES| Informatik & Automation GmbH RESI-T4/C4 loT Controller 152 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GrmbH RESI-T4/C4 loT Controller 153 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

	1 Our portfolio
	1.1 RESI-T4-xxx Compact IoT Controller
	1.2 RESI-C4-xxx IoT Controller with integrated IOs

	2 Declaration of conformity
	2.1 CE
	2.2 Safety instructions

	3 Mounting for XT4, XT8 or XT12
	3.1 Mounting on a DIN EN50022 rail
	3.2 Mounting onto a wall

	4 General technical data
	4.1 RESI-T4-xxx Basic technical data
	4.2 RESI-C4-xxx Basic technical data
	4.3 RESI-T4-xxx: Basic terminals
	4.4 RESI-C4-xxx: Basic terminals
	4.5 MODBUS and ASCII commands
	4.5.1 MODBUS mapping+ASCII command list for T4+C4 IoT controller
	4.5.2 MODBUS RTU master communication
	4.5.3 HOWTO map values to MODBUS registers
	4.5.4 MODBUS query response cycle
	4.5.5 MODBUS/RTU telegram structure

	4.6 MODBUS commands
	4.6.1 MODBUS 16 bit holding register structure
	4.6.2 MODBUS big vs. least significant byte order
	4.6.3 MODBUS storing large data into 16 bit registers
	4.6.4 MODBUS datatypes in our Co-processor
	4.6.5 MODBUS datatype storage and common pitfalls
	4.6.6 MODBUS data type table
	4.6.7 MODBUS table

	4.7 ASCII protocol
	4.7.1 COMMUNICATION SEQUENCE
	4.7.2 Example: Query VERSION
	4.7.3 Example: Query module TYPE
	4.7.4 Table of all ASCII commands

	5 Dimensions of our IoT Controller
	5.1 RESI-T4-xxx XT4 housing
	5.2 RESI-C4-xxx XT4 housing
	5.3 RESI-C4-xxx XT8 housing
	5.4 RESI-C4-xxx: XT12 housing

	6 Common functionalities ASCII+MODBUS
	6.1 Detecting the controller type and features
	6.2 Using the LEDs and DIP switch
	6.2.1 Reading the DIP switch in ASCII+MODBUS
	6.2.2 Update the LEDs in ASCII+MODBUS
	6.2.3 Use the real-time clock
	6.2.4 Retrieve the unique serial number+box name
	6.2.5 Use the ferromagnetic RAM
	6.2.6 Execute factory reset
	6.2.7 Additional WATCHDOG for LINUX
	6.2.8 INIT VALUES & COMMUNICATION WATCHDOG for IOs

	7 RESI-T4-xxx IoT Controller
	7.1 Basic functionality of T4 IoT family
	7.2 RESI-T4-Z basic module
	7.2.1 Technical specification
	7.2.2 Additional terminals or functionalities
	7.2.3 Connection diagram
	7.2.3.1 Cabling of the power supply and the Ethernet

	7.3 RESI-T4-xxx-CAN/CAN FD IoT Controller
	7.3.1 Technical specification
	7.3.2 Additional terminals or functionalities
	7.3.3 Connection diagram
	7.3.3.1 Additional cabling of the CAN/CAN FD interface

	7.4 RESI-T4-A,B,C,D with serial interfaces RS232 or RS485
	7.4.1 Technical specification
	7.4.2 Additional terminals or functionalities
	7.4.3 Connection diagram
	7.4.3.1 RESI-T4-A additional cabling
	7.4.3.2 RESI-T4-B additional cabling
	7.4.3.3 RESI-T4-C additional cabling
	7.4.3.4 RESI-T4-D additional cabling

	7.5 RESI-T4-KA,KB,KC with KNX interface+RS232 or RS485
	7.5.1 Technical specification
	7.5.2 Additional terminals or functionalities
	7.5.3 Connection diagram
	7.5.3.1 RESI-T4-KA additional cabling
	7.5.3.2 RESI-T4-KB additional cabling
	7.5.3.3 RESI-T4-KC additional cabling

	8 RESI-C4-xxx IoT controller
	8.1 Basic functionality of C4 family
	8.2 RESI-C4-A,-2E,-LTE with serial interface RS485
	8.2.1 Technical specification
	8.2.2 Additional terminals or functionalities
	8.2.3 Connection diagram
	8.2.3.1 RESI-C4-A additional cabling
	8.2.3.2 RESI-C4-A-2E additional cabling
	8.2.3.3 RESI-C4-A-LTE additional cabling

	8.3 Which IO types do our RESI-C4 series offer
	8.3.1 Digital inputs DC 12-48V=
	8.3.1.1 Technical specification
	8.3.1.2 Additional terminals or functionalities
	8.3.1.3 Cabling of the digital inputs
	8.3.1.4 Using the digital inputs with ASCII+MODBUS
	8.3.1.4.1 Digital input filter
	8.3.1.4.2 Current status of digital inputs
	8.3.1.4.3 Change & event counter for inputs
	8.3.1.4.4 ASCII Events

	8.3.2 Digital outputs DC ≦30V=
	8.3.2.1 Technical specification
	8.3.2.2 Additional terminals or functionalities
	8.3.2.3 Cabling of the digital outputs
	8.3.2.4 Using the digital outputs with ASCII+MODBUS
	8.3.2.4.1 Update all digital inputs & outputs
	8.3.2.4.2 Current status of digital outputs
	8.3.2.4.3 Pulsing the digital outputs
	8.3.2.4.4 Diagnostic information for digital outputs
	8.3.2.4.4.1 General diagnostic status of every chip
	8.3.2.4.4.2 SPI communication status of every chip
	8.3.2.4.4.3 Diagnostic status of every digital output
	8.3.2.4.4.4 Configuration of diagnostic status for init & watchdog

	8.3.3 Relay outputs ≦30V=, ≦250V~, ≦6A, AgSnO2
	8.3.3.1 Technical specification
	8.3.3.2 Additional terminals or functionalities
	8.3.3.3 Cabling of the relay outputs
	8.3.3.4 Using the relay outputs with ASCII+MODBUS
	8.3.3.4.1 Update all digital inputs & relay outputs
	8.3.3.4.2 Current status of relay outputs
	8.3.3.4.3 Pulsing the relay outputs

	8.3.4 Universal analog inputs & outputs 0-10V, 0-20mA, RTD
	8.3.4.1 Technical specification
	8.3.4.2 Additional terminals or functionalities
	8.3.4.3 Cabling of the universal analog inputs or outputs
	8.3.4.4 Using the universal analog inputs & outputs with ASCII+MODBUS
	8.3.4.4.1 Communication with co-processor
	8.3.4.4.2 Howto set the IO type of the AIOX
	8.3.4.4.3 Howto read analog inputs 0-10V or 2-10V
	8.3.4.4.4 Howto set an analog output 0-10V or 2-10V
	8.3.4.4.5 Howto read analog inputs 0-20mA or 4-20mA
	8.3.4.4.6 Howto set analog outputs 0-20mA or 4-20mA
	8.3.4.4.7 Howto read a digital input
	8.3.4.4.8 Howto read a resistor value
	8.3.4.4.9 Howto read a PT100,PT1000,NI1000-DIN43760 sensor
	8.3.4.4.10 Howto set output values for INIT & IO WATCHDOG
	8.3.4.4.11 Howto detect status & diagnostic of AIOX hardware
	8.3.4.4.12 Howto check temperature & supply voltages of AIOX hardware

