
RESI-C4-xxx
RESI-T4-xxx
IoT Controller
based on
Raspberry Pi® Compute Module 4 and PI4
Our series of intelligent IoT controller

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
More information under www.raspberrypi.org

Text, illustrations and programs have been elaborated with the greatest care. However, RESI Informatik & Automation
GmbH, translators and authors cannot accept any legal responsibility or liability for any incorrect information and its
consequences that may remain. This publication is protected by copyright. All rights reserved. No part of this book may
be reproduced in any form by photocopying, microfilm or other methods or in a language suitable for machines, in
particular data processing systems, without the prior written consent of RESI. The rights of reproduction through
lectures, radio and television are also reserved. This documentation and the associated software are protected by
copyright by the company RESI and by DI HC SIGL, MSc.

© Copyright 2005–2024 by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 1 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Content
1 Our portfolio..5

1.1 RESI-T4-xxx Compact IoT Controller.. .5
1.2 RESI-C4-xxx IoT Controller with integrated IOs.. .6

2 Declaration of conformity..7
2.1 CE.. .7
2.2 Safety instructions.. .7

3 Mounting for XT4, XT8 or XT12..8
3.1 Mounting on a DIN EN50022 rail... .8
3.2 Mounting onto a wall.. .10

4 General technical data..12
4.1 RESI-T4-xxx Basic technical data... .12
4.2 RESI-C4-xxx Basic technical data.. .13
4.3 RESI-T4-xxx: Basic terminals.. .14
4.4 RESI-C4-xxx: Basic terminals.. .16
4.5 MODBUS and ASCII commands... .17

4.5.1 MODBUS mapping+ASCII command list for T4+C4 IoT controller...17
4.5.2 MODBUS RTU master communication..17
4.5.3 HOWTO map values to MODBUS registers...18
4.5.4 MODBUS query response cycle..19
4.5.5 MODBUS/RTU telegram structure..20

4.6 MODBUS commands.. .21
4.6.1 MODBUS 16 bit holding register structure...23
4.6.2 MODBUS big vs. least significant byte order..23
4.6.3 MODBUS storing large data into 16 bit registers...24
4.6.4 MODBUS datatypes in our Co-processor..24
4.6.5 MODBUS datatype storage and common pitfalls..27
4.6.6 MODBUS data type table...29
4.6.7 MODBUS table..30

4.7 ASCII protocol... .31
4.7.1 COMMUNICATION SEQUENCE...32
4.7.2 Example: Query VERSION..32
4.7.3 Example: Query module TYPE..33
4.7.4 Table of all ASCII commands...34

5 Dimensions of our IoT Controller..35
5.1 RESI-T4-xxx XT4 housing... .35
5.2 RESI-C4-xxx XT4 housing.. .37
5.3 RESI-C4-xxx XT8 housing.. .39
5.4 RESI-C4-xxx: XT12 housing.. .41

6 Common functionalities ASCII+MODBUS...43
6.1 Detecting the controller type and features.. .43
6.2 Using the LEDs and DIP switch.. .45

6.2.1 Reading the DIP switch in ASCII+MODBUS...45
6.2.2 Update the LEDs in ASCII+MODBUS..46
6.2.3 Use the real-time clock...49
6.2.4 Retrieve the unique serial number+box name..51
6.2.5 Use the ferromagnetic RAM...51
6.2.6 Execute factory reset..53
6.2.7 Additional WATCHDOG for LINUX...53
6.2.8 INIT VALUES & COMMUNICATION WATCHDOG for IOs..54

7 RESI-T4-xxx IoT Controller...55
7.1 Basic functionality of T4 IoT family... .55
7.2 RESI-T4-Z basic module.. .56

7.2.1 Technical specification..57
7.2.2 Additional terminals or functionalities...57
7.2.3 Connection diagram..58

7.2.3.1 Cabling of the power supply and the Ethernet..58
7.3 RESI-T4-xxx-CAN/CAN FD IoT Controller... .59

7.3.1 Technical specification..59
7.3.2 Additional terminals or functionalities...59

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 2 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.3.3 Connection diagram..60
7.3.3.1 Additional cabling of the CAN/CAN FD interface..60

7.4 RESI-T4-A,B,C,D with serial interfaces RS232 or RS485... .61
7.4.1 Technical specification..62
7.4.2 Additional terminals or functionalities...62
7.4.3 Connection diagram..63

7.4.3.1 RESI-T4-A additional cabling...63
7.4.3.2 RESI-T4-B additional cabling..63
7.4.3.3 RESI-T4-C additional cabling..64
7.4.3.4 RESI-T4-D additional cabling..64

7.5 RESI-T4-KA,KB,KC with KNX interface+RS232 or RS485... .65
7.5.1 Technical specification..66
7.5.2 Additional terminals or functionalities...66
7.5.3 Connection diagram..68

7.5.3.1 RESI-T4-KA additional cabling..68
7.5.3.2 RESI-T4-KB additional cabling..68
7.5.3.3 RESI-T4-KC additional cabling..69

8 RESI-C4-xxx IoT controller...70
8.1 Basic functionality of C4 family... .70
8.2 RESI-C4-A,-2E,-LTE with serial interface RS485.. .71

8.2.1 Technical specification..74
8.2.2 Additional terminals or functionalities...74
8.2.3 Connection diagram..75

8.2.3.1 RESI-C4-A additional cabling..75
8.2.3.2 RESI-C4-A-2E additional cabling...75
8.2.3.3 RESI-C4-A-LTE additional cabling...76

8.3 Which IO types do our RESI-C4 series offer... .77
8.3.1 Digital inputs DC 12-48V=..77

8.3.1.1 Technical specification..78
8.3.1.2 Additional terminals or functionalities...79
8.3.1.3 Cabling of the digital inputs...80
8.3.1.4 Using the digital inputs with ASCII+MODBUS...81

8.3.1.4.1 Digital input filter...81
8.3.1.4.2 Current status of digital inputs..81
8.3.1.4.3 Change & event counter for inputs..83
8.3.1.4.4 ASCII Events...86

8.3.2 Digital outputs DC ≦30V=..87
8.3.2.1 Technical specification...88
8.3.2.2 Additional terminals or functionalities..89
8.3.2.3 Cabling of the digital outputs...90
8.3.2.4 Using the digital outputs with ASCII+MODBUS...91

8.3.2.4.1 Update all digital inputs & outputs..91
8.3.2.4.2 Current status of digital outputs..91
8.3.2.4.3 Pulsing the digital outputs..93
8.3.2.4.4 Diagnostic information for digital outputs...94

8.3.2.4.4.1 General diagnostic status of every chip..95
8.3.2.4.4.2 SPI communication status of every chip..100
8.3.2.4.4.3 Diagnostic status of every digital output..101
8.3.2.4.4.4 Configuration of diagnostic status for init & watchdog...105

8.3.3 Relay outputs ≦30V=, ≦250V~, ≦6A, AgSnO2...108
8.3.3.1 Technical specification..109
8.3.3.2 Additional terminals or functionalities...110
8.3.3.3 Cabling of the relay outputs... 111
8.3.3.4 Using the relay outputs with ASCII+MODBUS..112

8.3.3.4.1 Update all digital inputs & relay outputs..112
8.3.3.4.2 Current status of relay outputs...112
8.3.3.4.3 Pulsing the relay outputs...114

8.3.4 Universal analog inputs & outputs 0-10V, 0-20mA, RTD..116
8.3.4.1 Technical specification..117
8.3.4.2 Additional terminals or functionalities...119
8.3.4.3 Cabling of the universal analog inputs or outputs..120
8.3.4.4 Using the universal analog inputs & outputs with ASCII+MODBUS..123

8.3.4.4.1 Communication with co-processor...123
8.3.4.4.2 Howto set the IO type of the AIOX..123
8.3.4.4.3 Howto read analog inputs 0-10V or 2-10V...125
8.3.4.4.4 Howto set an analog output 0-10V or 2-10V...127
8.3.4.4.5 Howto read analog inputs 0-20mA or 4-20mA...130
8.3.4.4.6 Howto set analog outputs 0-20mA or 4-20mA..131
8.3.4.4.7 Howto read a digital input..135

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 3 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.8 Howto read a resistor value..137
8.3.4.4.9 Howto read a PT100,PT1000,NI1000-DIN43760 sensor...141
8.3.4.4.10 Howto set output values for INIT & IO WATCHDOG...144
8.3.4.4.11 Howto detect status & diagnostic of AIOX hardware...146
8.3.4.4.12 Howto check temperature & supply voltages of AIOX hardware..149

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 4 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

1 Our portfolio
Based on the Raspberry Pi® PI4 and Compute Module 4 LINUX board, we offer a broad spectrum of IoT Controller.

1.1 RESI-T4-xxx Compact IoT Controller
Our RESI-T4 series is based on the standard Raspberry Pi® PI4 board. We packed the board into an industrial
housing for the DIN rail and we extended the controller with various features:
 Industrial grade power supply 12-48Vdc
 Dimension XT4: 72x110x62mm (WxHxD)
 SD-CARD Slot with 32GB SD CARD for LINUX and your software
 Versions with integrated serial interfaces: RS232 or RS485
 Versions with integrated KNX interface
 Versions with integrated CAN 2.0 or CAN FD interface
 ARM Co-Processor with real time clock with backup capacitor, ferromagnetic RAM for permanent data storage,

unique serial number, Status LEDs and 8 pin DIP switch

The modules are designed for mounting on a DIN EN50022 rail. But the modules offer also a wall mounting option.

Figure: Our series of RESI-T4-xxx IoT Controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 5 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

1.2 RESI-C4-xxx IoT Controller with integrated IOs
Our RESI-C4 series is based on the Raspberry Pi® Compute Module 4 board. We build around the CPU module an
industrial grade controller with integrated IOs. The main features of this series are:
 Industrial grade power supply 12-48Vdc
 Dimension XT4: 72x110x62mm (WxHxD) or XT8 143x110x62mm or XT12 213x110x62mm
 SD-CARD Slot with 32GB SD CARD for LINUX and your software
 One serial interface RS485
 Versions with integrated LTE modem
 Versions with second Ethernet
 ARM Co-Processor for management of the integrated IOs.
 Up to 152 integrated IOs.
 ARM Co-Processor with real time clock with backup capacitor, ferromagnetic RAM for permanent data storage,

unique serial number, Status LEDs and 8 pin DIP switch

The modules are designed for mounting on a DIN EN50022 rail. But the modules offer also a wall mounting option.

Figure: Our series of RESI-C4-xxx IoT Controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 6 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

2 Declaration of conformity

2.1 CE
All products have passed the CE tests for environmental specifications when shielded cables are used for external
wiring. We recommend the use of shielded cables.

2.2 Safety instructions

Danger to life through electrical current!

Only skilled personal trained in electro-engineering should perform the described steps in the following chapters. Please observe the country specific
rules and standards. Do not perform any electrical work while the device is connected to power.
Pay attention to the following rules:

1. Disconnect the system from power
2. Secure the system against automatic power on
3. Check that the system is de-energized
4. Cover other energized parts of the system

IMPORTANT HINT: Before you start with the installation and the initial setup of the device, you have to read this document and the attached
installation guide and the actual manual for the device very carefully. You have to follow all the herein given information very accurate!
 Only authorized and qualified personnel are allowed to install and setup the device!
 The connection of the device must be done in de-energized state!
 Do not perform any electrical work while the device is connected to power!
 Disable and secure the system against any automatic restart or power on procedure!
 The device must be operated with the defined voltage level!
 Supply voltage jitters must not exceed the technical specifications and tolerances given in the technical manuals for the product. If you do not

obey this issue, the proper performance of the device cannot be guaranteed. This can lead to fail functions of the device and in worst case to a
complete breakdown of the device!

 You have to obey the current EMC regulations for wiring!
 All signal, control and supply voltage cables must be wired in a way, that no inductive or capacitive interference or any other severe electrical

noise disturbance may interfere with the device. Wrong wiring can lead to a malfunction of the device!
 For signal or sensor cables you have to use shielded cables, to avoid damages through induction!
 You have to obey and to apply the current safety regulations given by the ÖVE, VDE, the countries, their control authorities, the TÜV or the local

energy supply company!
 Obey country-specific laws and standards!
 The device must be used for the intended purpose of the manufacturer!
 No warranties or liabilities will be accepted for defects and damages resulting from improper or incorrect usage of the device!
 Subsequent damages, which results from faults of this device, are excluded from warranty and liability!
 Only the technical data, wiring diagrams and operation instructions, which are part to the product shipment are valid!
 The information on our homepage, in our data sheets, in our manuals, in our catalogs or published by our partners can deviate from the

product documentation and is not necessarily always actual, due to constant improvement of our products for technical progress!
 In case of modification of our devices made by the user, all warranty and liability claims are lost!
 The installation has to fulfil the technical conditions and specifications (e.g. operating temperatures, power supply, …) given in the devices

documentation!
 Operating our device close to equipment, which do not comply with EMC directives, can influence the functionality of our device, leading to

malfunction or in worst case to a breakdown of our device!
 Our devices must not be used for monitoring applications, which solely serve the purpose of protecting persons against hazards or injury, or as

an emergency stop switch for systems or machinery, or for any other similar safety-relevant purposes!
 Dimensions of the enclosures or enclosures accessories may show slight tolerances on the specifications provided in these instructions!
 Modifications of this documentation is not allowed!
 In case of a complaint, only complete devices returned in original packing will be accepted!

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 7 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

3 Mounting for XT4, XT8 or XT12
Our IoT controllers are designed for mounting onto a 35mm DIN-EN50022 rail or for wall mounting.
Please note, that in the following mounting description we use only symbolic photos of our IoT controllers.

3.1 Mounting on a DIN EN50022 rail
First snap in the top part of the module into the DIN rail (1). The bottom part of the module is not snapped into the
DIN rail at this moment.

Then open the black hook with a screw driver (2). Now press the module with the opened hook onto the DIN rail
until both sides of the module snap into the DIN rail (3). Release the screw driver now. The hook snaps into the DIN
rail and the module is now mounted correctly onto the DIN rail.

To remove the module from the DIN rail, you must open the hook with a screwdriver first. (4). Afterwards tilt the
bottom side of the module upwards with the open hook (5). Now remove the module slightly from the DIN rail with
the top side, to completely hang out the module from the DIN rail.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 8 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

1

3
2

The module is correctly mounted, if the module has snapped into the DIN rail on both sides of the housing (6) and
if the hook has snapped in too (7).

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 9 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

54

77

6

6

3.2 Mounting onto a wall
Our modules can also be mounted onto a wall. Turn over the module as shown in the picture below:

You will notice, that there are two holes for wall hooks or screws on the top side of the housing. (1) and (2). On the
bottom side you will notice a small hole for a screw to fix the housing on the wall from the front (3). But first we
have to remove the hook, which blocks the screw hole in the housing.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 10 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

2
1

3

4

Press carefully the screwdriver onto the hook to open the lock (4) and pull back the hook to the inner side of the
housing bottom to remove the hook. If the hook is not snapped into the housing, you can remove the hook by
hand (5) and the screw hole for fixing the housing with a screen from the front side of the housing (6).

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 11 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

5

6

4 General technical data
In this section you will find all technical data which is common to all IO modules. In the specific sections of the
individual IO modules you will find only the differences and extensions to this standard description.

4.1 RESI-T4-xxx Basic technical data
Power supply
Supply voltage 12-48 V = +/- 10%
Power consumption see individual technical data for specific IoT controller

Raspberry Pi 4® module
Module type Raspberry PI 4 with 2/4/8GB RAM

More details on the official Raspberry homepage

Operating system LINUX
FLASH in SD-CARD slot: 32GB

Serial interfaces
Up to three serial interfaces: RS232 or RS485

Ethernet interface
Cable connection via RJ 45 socket

USB interface 1xUSB 2.0, 2xUSB 3.0

HDMI interface 2xHDMI micro connectors 4K

AUDIO+VIDEO interface 1xAUDIO+VIDEO out connector

Real-Time-Clock Yes, with external backup capacitor

General
Storage temperature -20...85 °C
Operating temperature 0...50 °C
Humidity 25...90% r.H. non-condensing
Protection class IP20 (EN 60529)
Dimensions LxWxH see section Dimension
Weight see individual technical data for specific IO module
Installation on DIN EN50022 rail and on wall

Approvals
CE conformity Yes

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 12 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.2 RESI-C4-xxx Basic technical data
Power supply
Supply voltage 12-48 V = +/- 10%
Power consumption see individual technical data for specific IoT controller

Raspberry Pi 4® module
Module type Raspberry PI Compute Module 4 with 2/4/8GB RAM

More details on the official Raspberry homepage

Operating system LINUX
FLASH in SD-CARD slot: 32GB

Serial interfaces 1xRS485

Ethernet interface 1xEthernet or 2xEthernet
Cable connection via RJ 45 socket

USB interface 2xUSB 2.0

HDMI interface 1xHDMI micro connector 4K

Real-Time-Clock Yes, with external backup capacitor

General
Storage temperature -20...85 °C
Operating temperature 0...50 °C
Humidity 25...90% r.H. non-condensing
Protection class IP20 (EN 60529)
Dimensions LxWxH see section Dimension
Weight see individual technical data for specific IO module
Installation on DIN EN50022 rail and on wall

Approvals
CE conformity Yes

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 13 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.3 RESI-T4-xxx: Basic terminals
 The RESI-T4-xxx IoT controller come in a housing with removable clamps. All T4 IoT Controller offer the following
terminals:

L+, M- Power supply via two separated plug-in 2-pin terminal blocks.
For daisy chain IN and OUT power supply of many modules
Pin 1: L+: 12-48 V=
Pin 2: M-: Ground
Terminal type: RM5

Depending on IoT controller: Up to 3xRS485 or RS232 or up to 2xRS232 or RS485 and
1xKNX

RS485#? RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS485 ground signal
Terminal type: RM3.5

RS232#? RS232 serial interface
Pin 1: TX: RS232 DATA+ signal
Pin 2: RX: RS232 DATA- signal
Pin 3: M-: RS232 ground signal
Terminal type: RM3.5

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 14 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

KNX KNX interface
Pin 1: K+: KNX+ signal (RED)
Pin 2: K-: KNX- signal (BLACK)
Terminal type: RM3.5

CAN/CAN FD CAN 2.0 or CAN FD interface
Pin 1: H: CAN HIGH signal
Pin 2: L: CAN LOW signal
Pin 3: G: CAN Ground signal
Terminal type: RM3.5

Terminal type RM5 Cable cross section: max. 2.5 mm², max. 14AWG
Screw: M3
Tightening torque: max. 0.5Nm, max. 4.43 Lb-in

Terminal type RM3.5 Cable cross section: max. 1.5 mm², max. 16AWG
Screw: M2
Tightening torque: max. 0.2Nm, max. 1.77 Lb-in

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 15 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.4 RESI-C4-xxx: Basic terminals
 The RESI-C4-xxx IoT controller come in a housing with removable clamps. All C4 IoT Controller offer the following
terminals:

L+, M- Power supply via two separated plug-in 2-pin terminal blocks.
For daisy chain IN and OUT power supply of many modules
Pin 1: L+: 12-48 V=
Pin 2: M-: Ground
Terminal type: RM5

SIO1 RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS485 ground signal
Terminal type: RM3.5

Terminal type RM5 Cable cross section: max. 2.5 mm², max. 14AWG
Screw: M3
Tightening torque: max. 0.5Nm, max. 4.43 Lb-in

Terminal type RM3.5 Cable cross section: max. 1.5 mm², max. 16AWG
Screw: M2
Tightening torque: max. 0.2Nm, max. 1.77 Lb-in

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 16 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.5 MODBUS and ASCII commands
Our controllers offer the possibility to communicate with the internal ARM Co-processor either via ASCII commands
or with MODBUS RTU master protocol.

Our RESI-T4-xxx controller offer ASCII and MODBUS RTU master communication via dev/ttyACM0
Our RESI-C4-xxx controller offer ASCII communication via dev/ttyACM0 and MODBUS RTU master communication
via dev/ttyACM1

4.5.1 MODBUS mapping+ASCII command list for T4+C4 IoT controller
Please refer to the external document for detailed documentation of the current MODBUS+ASCII commands for this
IoT controller. You will find it on our website www.RESI.cc in the document section for the specific IoT controller.

IMPORTANT HINT:
The ASCII commands and answers may vary through the actual amount of IOs of your IoT controller model. So in
this document we show ASCII commands only as a hint, how to use the commands.

The MODBUS register indices are not always the same for all IoT controllers. So be aware that in this documentation
we only give you a sample MODBUS register or coil out of any IoT controller of our portfolio to show the basic
register mapping for a function.

So take this document only as a hint, how to read or write to the registers and coils. But the correct index is only
found in the current document for your IoT Controller. This document with the list of all ASCII commands is found
on our web server. It has the name RESI-L-<ControllerName>-MODBUS+ASCII-EN.pdf

4.5.2 MODBUS RTU master communication
For communication with the ARM Co-processor, the LINUX software can use MODBUS/RTU master protocol.
The Co-processor offers the following MODBUS functions:

 READ COILS (function code: 1)
 READ CONTACTS (function code: 2)
 WRITE SINGLE COIL (function code: 5)
 WRITE MULTIPLE COILS (function code: 15)

 READ HOLDING REGISTER (function code: 3)
 READ INPUT REGISTER (function code: 4)
 PRESET SINGLE REGISTER (function code: 6)
 PRESET MULTIPLE REGISTERS (function code: 16)

IMPORTANT:
The internal Co-processor uses always UnitID 1 because it is the only MODBUS/RTU slave on this serial line!
The settings of the baud rate, parity, stop bits are irrelevant, due to the fact that the Co-processor is physically
connected via USB to the LINUX system.

HINT:
The functions READ HOLDING REGISTER, READ INPUT REGISTER and PRESET MULTIPLE REGISTERS are restricted to
max. 125 register per request.
The functions READ COILS, READ CONTACTS and WRITE MULTIPLE COILS are restricted to max. 1000 bits per
request.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 17 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

http://www.RESI.cc/

4.5.3 HOWTO map values to MODBUS registers
MODBUS is an international standard for communication between host systems like PLCs, DDCs or Industrial PCs
and peripheral components or sensors.

More details about the MODBUS standard and the MODBUS protocol can be found here:
http://en.wikipedia.org/wiki/Modbus
http://www.modbus.org/

You can find a documentation about this in the internet called “PI_MBUS_300.pdf”, which describes the MODBUS
protocol pretty good.

There are three different MODBUS protocol versions available:
MODBUS/TCP: Used for communication with TCP/IP systems
MODBUS/RTU: A binary version of the MODBUS protocol
MODBUS/ASCII: An ASCII text based version of the protocol

To communicate with our ARM Co-processor you have to use MODBUS/RTU master protocol version.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 18 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.5.4 MODBUS query response cycle
MODBUS is a master slave protocol. This means, the master (your host system) has to send a protocol to a specific
MODBUS slave (one of our converters), then this specific slave answers to the master, and then the master asks the
next slave. The address of the slave is the so-called device address or unit address, which we mentioned before. See
the below graphic, how a basic MODBUS request and response cycle looks like.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 19 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.5.5 MODBUS/RTU telegram structure
A MODBUS/RTU protocol frame consists out of the following fields:
START: There is no specific start character, so a pause of four character timings depending on the baud rate of your

communication must be established. This means at least for four characters, that there must be no
communication on the serial line!

ADDRESS: This is the unit address of the slave, the master wants to talk to. It’s a number between 0 and 255.
FUNCTION: This defines the type of data communication, the master wants to handle with the slave. Refer to the

next pages for a detailed description of the functions.
DATA: This is a block of individual data bytes.
CRC CHECK: This is the checksum, to let the master and slave check, if the received protocol is correct and without

communication errors.
END: Same as the start condition. Again there must not be communicated for at least 4 character times on the

serial line.

IMPORTANT HINT: If there is more than one MODBUS slave on a serial line, the pausing of the START and END
sequence are essential to re synchronize the slaves in case of data loss. If the host doesn’t keep this gaps,
communication with the slaves can be corrupted or impossible!

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 20 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6 MODBUS commands
The MODBUS standard defines many available commands . But not all systems handle the complete spectrum of
telegrams. Our converter handles only all telegrams necessary for using holding and INPUT registers.

We support
01 READ COIL STATUS
02 READ INPUT STATUS
03 READ HOLDING REGISTER
04 READ INPUT REGISTER
05 FORCE SINGLE COIL
06 PRESET SINGLE REGISTER
15 FORCE MULTIPLE COILS
16 PRESET MULTIPLE REGISTER

IMPORTANT HINT: All other protocols are ignored by our converters.

So what are COILS or INPUTS ?
According to the MODBUS standard, a MODBUS/RTU slave can hold up to 65535 coils and 65535 inputs. Each coil
or input is a 1 bit register, capable for binary values between 0 and 1.

A MODBUS/RTU master system can read and write the contents of those registers with the functions:
01 READ COIL STATUS
02 READ INPUT STATUS
05 FORCE SINGLE COIL
15 FORCE MULTIPLE COILS

Our Co-processor has only one table for coils and inputs. So it makes no difference if your read coils or inputs. You
will read the same state!

So what are HOLDING or INPUT REGISTERs ?
According to the MODBUS standard, a MODBUS/RTU slave can hold up to 65535 HOLDING registers and 65535
INPUT registers. Each holding or input register is a 16 bit register, capable for integer values between 0 and 65535
or in hexadecimal from 0x0000 to 0xFFFF.

A MODBUS/RTU master system can read and write the contents of those registers:
03 READ HOLDING REGISTER
04 READ INPUT REGISTER
06 PRESET SINGLE REGISTER
16 PRESET MULTIPLE REGISTER

Our Co-processor has only one table for holding and input registers. So it makes no difference if your read holding
registers or input register. You will read the same state!

IMPORTANT HINT:
A MODBUS/RTU master can read and write into this registers with a 16 bit index, called the starting address. The
problem is the definition of the starting address. A 16 bit value can store the values from 0 to 65535. But according
the MODBUS standard the registers are numbered from 1 to 65536. So, if the MODBUS standard talks about register
1, an index of 0 must be used as start address in the telegram. You have to check carefully, how this index is
interpreted by the manufacturer's documentation.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 21 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Whenever you get a description of registers for a MODBUS device, the first question to solve is: How is the
enumeration of the registers done?! Does the author use base=0, then he talks about the real start index of the
telegram. Does the author mean base=1, conforming to naming conventions of the MODBUS consortium, then you
have to subtract 1 before using this address in your telegrams.

IMPORTANT HINT:
If we display a holding register address like 4x00009 in our tool, we assume base=1 conforming to the standard. So
your host system has to send the start index 00008 decimal to read out the correct register.

Start Index (Base=0) MODBUS Register (Base=1) Description

0 1 The first holding register

1 2 The second holding register

2 3 The third holding register

… …

65534 65535 The penultimate holding
register

65535 65536 The last holding register

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 22 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6.1 MODBUS 16 bit holding register structure
Here we give a brief introduction, how to build the contents of a MODBUS holding register, and how a hexadecimal
writing of a 16 bit register looks like. We assume, that the user is familiar to hexadecimal and binary number systems
and also how a computer stores data into its internal memory.

For more details consult the internet:
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Binary_number

Usually a hexadecimal digit describes 4 bits. So we can group the 16 bits into 4 hexadecimal digits named
H3,H2,H1,H0. This means eg. the hexadecimal number 0xABCD stands for H3=A, H2=B, H1=C, H0=D.

16 Bit HOLDING Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB LSB

H0H1H2H3
0xA=1010 binary, 10 dec, 0xB=1011,11 dec, 0xC=1100,12 dec and 0xD=1101, 13 dec. So the resulting binary number is
1010101111001101b or 43981 decimal.

See this graphical explanation, how the number is stored:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB LSB

DCBA

1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1

4.6.2 MODBUS big vs. least significant byte order
Now the first problem for a host system arises:
If we take the 16 bit number 0xABCD, we have to use 2 bytes to store this value internally. There are two concurrent
versions of how to store this value in the RAM:

INTEL byte order, Little endian systems store the least significant byte first. So a memory map for 0xABCD look like:

CD
AB

Memory address 0
Memory address 1

MOTOROLA byte order, Big endian systems store the most significant byte first. So a memory map for 0xABCD look
like:

AB
CD

Memory address 0
Memory address 1

Consult the internet for more details about this storage system.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 23 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

http://en.wikipedia.org/wiki/Endianness

4.6.3 MODBUS storing large data into 16 bit registers
After years, the market found out, that the capabilities of storing only 16 bit numbers into one holding register is not
enough for many applications. The most common solution to store more than 16 bit values into holding registers is
to use more than one register to hold the value. For storing e.g. a 32 bit value, we use two consecutive 16 bit
holding registers, for storing a 32 bit float value we also use also two consecutive 16 bit registers!

We want to store the 32 bit integer value 0x12345678 into two consecutive holding registers starting at 4x00020.
The memory map of the holding registers look like:

0x1234Holding Register 4x00020Start Index 19

16 bit value

0x5678Holding Register 4x00021Start Index 20

But again, we can also store the reverse word order into two consecutive registers. Then the result looks like this:

0x5678Holding Register 4x00020Start Index 19

16 bit value

0x1234Holding Register 4x00021Start Index 20

So none of the above mentioned orders is better than the other. It depends only on the programmer, how the 32
bit value is treated.

Be aware, that both systems (host and converter) have to treat the 32 bit value in the same way. Otherwise you will
read out wrong data! We will discuss this issue later in combination with 32 bit float numbers.

Our converter uses the second described way to store 32 bit values. We follow the little endian strategy of INTEL
systems and store 0x5678 into the first HOLDING register, and then we store 0x1234 in the consecutive register.

4.6.4 MODBUS datatypes in our Co-processor
Our Co-processor supports the following data types for storing values into MODBUS registers.
16 bit signed binary: This is an integer number between -32767..0..+32768 or 0x0000 to 0xFFFF hex. This number

needs exactly one HOLDING register.

32 bit singed binary: This is an integer number between -2,147,483,647..0..+2,147,483,648 or 0x00000000 to
0xFFFFFFFF hex. This number needs two consecutive holding registers. We store the least significant word first.
The serial number 2544082 is in hex 0x26D1D2. This leads to the following HOLDING register layout:

0xD1D2 or 53714 decHolding Register 4x00001Start Index 0

16 bit value

0x0026 or 38 decHolding Register 4x00002Start Index 1

32 bit IEEE floating point: This is a float number using 32 bit. As before, this float needs two consecutive holding
registers. We store the least significant word first. The energy value of 6632480,00 is defined in 32 bit hex with
0x4ACA6840. This leads to the following HOLDING register layout. For more details search in the internet or

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 24 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

consult http://en.wikipedia.org/wiki/IEEE_floating_point or try out some float values and their hexadecimal
representation under http://www.h-schmidt.net/FloatConverter/IEEE754.html

0x6840Holding Register 4x00001Start Index 0

16 bit value

0x4ACAHolding Register 4x00002Start Index 1

32 bit IEEE floating point inverse: This is a float number using 32 bit. Again this float needs two consecutive
holding registers. We store the least significant word first. The energy value of 6632480,00 is in 32 bit hex
0x4ACA6840. This means the following HOLDING register layout. For more details search in the internet or
consult http://en.wikipedia.org/wiki/IEEE_floating_point or try out some float values and their hexadecimal
representation under http://www.h-schmidt.net/FloatConverter/IEEE754.html

0x4ACAHolding Register 4x00001Start Index 0

16 bit value

0x6840Holding Register 4x00002Start Index 1

IMPORTANT HINT:
32 bit floats are very tricky! Eg. The value 3,5351799 is represented internally as 0x40624063. But the reverse word
order (if the host reads out the wrong register indexes or the host corrupts the word order) 0x40634062 leads to
the float number 3,5508046. So this error in your software is very hard to find! Be very cautious, which register
indexes you read and how the word order of the two registers are interpreted.

32 bit date&time: This is a compressed format using 32 bit. Again the least significant word is stored into the first
register. The structure of the 32 bits are:
Bits 0..7: minute
Bits 8..15: hour
Bits 16..20: day
Bits 21..24: month
Bits 25..31: year
The current date & time “07.04.00 01:13” is represented hexadecimal with 0x0087010d (8847628dec) and
stored as followed:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 25 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

0x010DHolding Register 4x00001Start Index 0

16 bit value

0x0087Holding Register 4x00002Start Index 1

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 26 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6.5 MODBUS datatype storage and common pitfalls
In general MODBUS uses 16 bit wide registers. So if you use only datatypes, which needs also only one register, the
mapping is easy. But as soon as you use datatypes, e.g. UINT32, which need two or more MODBUS registers, you
can map the values in different ways.

We do a simple sample. We want to store the 32 bit unsigned integer value in hexadecimal 0x12345678 in MODBUS
holding registers starting with index 4x00010. The mapping can be done in two different ways:

MODBUS
Register

Storage of UINT32 datatype

4x00010
I:9

The high word of the 32 bit value 0x12345678 is stored in the first 16 bit wide MODBUS register.
This means the value 0x1234 is stored here.

4x00011
I:10

The low word of the 32 bit value 0x12345678 is stored in the second 16 bit wide MODBUS
register. This means the value 0x5678 is stored here.

But it is only one possibility, that we store the high word in the first MODBUS register. With the same right, we can
define to store the low word in the first register, and the high word in the second.

The result will look like this:
MODBUS
Register

Storage of UINT32R datatype

4x00010
I:9

The low word of the 32 bit value 0x12345678 is stored in the first 16 bit wide MODBUS register.
This means the value 0x5678 is stored here.

4x00011
I:10

The high word of the 32 bit value 0x12345678 is stored in the second 16 bit wide MODBUS
register. This means the value 0x1234 is stored here.

More complicated is the storage of a FLOAT32 value into two consecutive holding registers. We use a standard
room temperature e.g. 23,45 °C as a value, we want to store it into two registers.

First we have to translate this value into a valid IEE754 float value. Therefore we use a perfect site in the internet
(http://www.h-schmidt.net/FloatConverter/IEEE754.html):

We enter the value 23.45 and we get a 32 bit hexadecimal representation of the float value. It is the number
0x41BB999A. Now we store this value in the same way, we have stored the UINT32 value into two registers:

MODBUS
Register

Storage of FLOAT32 datatype

4x00010
I:9

The high word of the 32 bit float value 0x41BB999A is stored in the first 16 bit wide MODBUS
register. This means the value 0x41BB is stored here.

4x00011
I:10

The low word of the 32 bit float value 0x41BB999A is stored in the second 16 bit wide MODBUS
register. This means the value 0x999A is stored here.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 27 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But we can also use the reverse notation:
MODBUS
Register

Storage of FLOAT32R datatype

4x00010
I:9

The low word of the 32 bit float value 0x41BB999A is stored in the first 16 bit wide MODBUS
register. This means the value 0x999A is stored here.

4x00011
I:10

The high word of the 32 bit float value 0x41BB999A is stored in the second 16 bit wide MODBUS
register. This means the value 0x41BB is stored here.

Now we show a common pitfall in writing and reading more than one MODBUS register and rebuilding a value. We
use a different float value. In hexadecimal it is 0x41BC41BB. Again we use the online converter:

You notice, the float value is 23.532095.

Now we store it with HIGH word first into two registers:

MODBUS
Register

Storage of FLOAT32 datatype

4x00010
I:9

HIGH WORD

The high word of the 32 bit float value 0x41BC41BB is stored in the first 16 bit wide MODBUS
register. This means the value 0x41BC is stored here.

4x00011
I:10

LOW WORD

The low word of the 32 bit float value 0x41BC41BB is stored in the second 16 bit wide MODBUS
register. This means the value 0x41BB is stored here.

But now we make a very big mistake, we read the two registers and restore the hexadecimal value in our host
software in the reverse word order. First low word, then high word. The result is the 32 bit value 0x41BB41BC instead
the correct value 0x41BC41BB. Then we convert this into an IEE754 float value.

The result is 23.407097. This is not far away from the original number of 23.532095! So this massive software error
can be undiscovered for a long time. Only if the reverse float value generates numbers which are physically not
possible for the measured signal, this error is discovered!

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 28 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6.6 MODBUS data type table
The following table shows, how more complex data types are stored in successive 16 bit holding or input registers
within the MODBUS registers:

MODBUS
DATATYPE

SIZE WORD
ORDER

DESCRIPTION

UINT16 16 bits
1 register

none Defines a 16 bit unsigned integer value in the range of 0 to
65535 or 0x0000 to 0xFFFF

SINT16 16 bits
1 register

none Defines a 16 bit signed integer value in the range of -32768
to +32767 or 0x8000 to 0x7FFF

UINT32 32 bits
2 register

0:High Word
1:Low Word

Defines a 32 bit unsigned integer value in the range of 0 to
4.294.967.295 or 0x00000000 to 0xFFFFFFFF

SINT32 32 bits
2 register

0:High Word
1:Low Word

Defines a 32 bit signed integer value in the range of
2.147.483.648 to +2.147.483.647or 0x80000000 to −

0x7FFFFFFF

UINT32R 32 bits
2 register

0:Low Word
1:High Word

Defines a 32 bit unsigned integer value in the range of 0 to
4.294.967.295 or 0x00000000 to 0xFFFFFFFF with reverse
word order

SINT32R 32 bits
2 register

0:Low Word
1:High Word

Defines a 32 bit signed integer value in the range of
2.147.483.648 to +2.147.483.647or 0x80000000 to −

0x7FFFFFFF with reverse word order

FLOAT32 32 bits
2 register

0:High Word
1:Low Word

Defines a 32 bit float value in the range of ±1.4·10 45 − to
±3.403·1038. A mantissa of 23 bits and an exponent of 8 bits
are used. The value can store 7 to 8 digits after the comma.

FLOAT32R 32 bits
2 register

0:Low Word
1:High Word

Defines a 32 bit float value in the range of ±1.4·10 45 − to
±3.403·1038. A mantissa of 23 bits and an exponent of 8 bits
are used. The value can store 7 to 8 digits after the comma.
The two 16 bit words are stored in reverse order.

DOUBLE64 64 bits
4 register

0:Highest
Word
1:Higher Word
2:Lower Word
3:Lowest
Word

Defines a 64 bit float value in the range of ±4.24·10 324 − to
±1,798·10308. A mantissa of 52 bits and an exponent of 11
bits are used. The value can store 15 to 16 digits after the
comma.

DOUBLE64R 64 bits
4 register

0:Lowest
Word
1:Lower Word
2:Higher Word
3:Highest
Word

Defines a 64 bit float value in the range of ±4.24·10 324 − to
±1,798·10308. A mantissa of 52 bits and an exponent of 11
bits are used. The value can store 15 to 16 digits after the
comma. The four 16 bit words are stored in reverse order.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 29 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.6.7 MODBUS table

COILS (1x) & INPUTS (2x)
The module holds internally a list of 1 bit coil and input register. Those registers can be read by the host with the
function READ COIL STATUS (function code: 1). If the register can also be modified by the host, the host can use the
functions FORCE SINGLE COIL (function code: 5) and FORCE MULTIPLE COILS (function code: 15).

In addition the SAME registers are also readable over the function READ INPUT STATUS (function code: 2). This is for
host systems, which do not support all MODBUS/RTU functions properly.

The MODBUS convention defines 65535 possible coils with the notation 1x00001 to 1x65536. Inputs are usually
noted with 2x00001 to 2x65536. Please refer the software MODBUS POLL as a sample for this notation. Internally in
the MODBUS/RTU frames an index notation is used, which starts with 0 and ends with 65535. So we decided to
note in the following document a register with: 1x00100 for the coil 100, 2x00100 as a hint, that you can read this
register also as the input 100, and in addition also the real index of the protocol index 99 with the notation I:99.

HOLDING REGISTER (3x) & INPUT REGISTER (4x)
The module holds internally a list of 16 bit wide holding register. Those registers can be read by the host with the
function READ HOLDING REGISTER (function code: 3). If the register can also be modified by the host, the host can
use the functions PRESET SINGLE REGISTER (function code: 6) and PRESET MULTIPLE REGISTERS (function code: 16).

In addition the SAME holding registers are also readable over the function READ INPUT REGISTER (function code:
4). This is for host systems, which do not support all MODBUS/RTU functions properly.

The MODBUS convention defines 65535 possible holding register with the notation 4x00001 to 4x65536. Input
register are usually noted with 3x00001 to 3x65536. Please refer the software MODBUS POLL as a sample for this
notation. Internally in the MODBUS/RTU frames an index notation is used, which starts with 0 and ends with 65535.
So we decided to note in the following document a register with: 4x00100 for the holding register 100, 3x00100 as a
hint, that you can read this register also as the input register 100, and in addition also the real index of the protocol
index 99 with the notation I:99.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 30 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.7 ASCII protocol
All of our IoT controller communicate with very simple ASCII commands with the LINUX software.
The following special characters are used in this description:

stands for the hash sign ASCII character 35dec or 0x23
: stands for the colon ASCII characters 58dec or 0x3A
= stands for the equal sign with the ASCII code 61ec or 0x3D
- stands for the minus sign with the ASCII code 45dec or 0x2D
, stands for the comma with the ASCII code 44dec or 0x2C
<CR> or CR stands for the CARRIAGE RETURN ASCII character 13dec or 0x0D. This is shown as CR in the following.
<SP> or  stands for SPACE. This is the space in ASCII code 32dec or 0x20. The space is shown as , hereinafter.
In the following <ADR> is used for the bus address. This can be transmitted in decimal or hexadecimal and is
separated from the following command with a comma (ASCII characters 44dec or 0x2C). Hexadecimal numbers
always start with 0x. Only the ASCII characters '0' - '9' 48dec to 57dec, 0x30-0x39 and 'A' to 'F', 65dec to 70dec,
0x41-0x46 may be used.

Our Co-processor uses always 255 or 0xFF as a bus address. Due to the fact, that the Co-processor is the only
device on the serial line you can also avoid the bus number.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 31 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.7.1 COMMUNICATION SEQUENCE
In principle, the Co-processor does not send any characters by itself. Communication always starts from the LINUX
software.

The command structure looks like this:

The host sends a command or a command with parameters without a bus address:
#<command><CR> or
#<command>:<parameter><CR>

The module responds when it feels addressed with the telegram:
#<respond><CR>

The host sends the following to the module with the bus address (For our Co-processor always 255 or 0xFF):
#<ADR>,<command><CR> or
#<ADR>,<command>:<parameter><CR>

The Co-processor then replies with:
#<ADR>,<reply><CR>

4.7.2 Example: Query VERSION
This command provides the current type of the module.

Host command:
#VERSION<CR> or
#<ADR>,VERSION<CR>

Reply:
#VERSION:<HIGH>.<MED>.<LOW><CR> or
#<ADR>,VERSION:<HIGH>,<MED>,<LOW><CR>

<HIGH>.<MED>.<LOW> represents the current software version, e.g. 3.0.0

Examples:
 #VERSIONCR

 #VERSION:3.0.0CR

With broadcast address in decimal:
 #255,VERSIONCR

 #255,VERSION:3.0.0CR

With broadcast address in hexadecimal:
 #0xFF,VERCR

 #255,VERSION:3.0.0CR

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 32 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.7.3 Example: Query module TYPE
This command provides the current type of the module.

Host command:
#TYPE<CR> or
#<ADR>,TYPE<CR>

Respond:
#TYPE:<TYP><CR> or
#<ADR>,TYPE:<TYP><CR>

<TYP> represents the current type of the module. A RESI-T4-A is shown as an example

Examples:
 #TYPECR

 #TYPE:RESI-T4-ACR

 #255,TYPCR

 #255,TYPE:RESI-T4-ACR

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 33 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

4.7.4 Table of all ASCII commands
For every IoT controller you will find an actual list with all ASCII commands on our web server www.RESI.cc. Browse
to the product and download the PDF document with all commands.
The file name will be like RESI-L-<ProductName>-MODBUS+ASCII-EN.pdf

Only the version including the bus address is listed here. It has already been explained that this can also be omitted.
If an argument has the addition dec, it is returned as a decimal number. If an argument has the addition hex, a
hexadecimal number is returned. Many commands return both the decimal and the hexadecimal representation.
The host can thus choose which number conversion he would like to carry out.

Please refer to the description of individual products for more details about the available ASCII commands.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 34 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

http://www.RESI.cc/

5 Dimensions of our IoT Controller

5.1 RESI-T4-xxx XT4 housing

Figure: Dimensions of the housing for our T4 IoT Controller in XT4 modules in mm

Dimensions
Housing LxWxH in mm 142.3x110x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 35 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our IoT controller in XT4 format: Housing illustration in 3D

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 36 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

5.2 RESI-C4-xxx XT4 housing

Figure: Dimensions of the housing for our C4 IoT Controller in XT4 modules in mm

Dimensions
Housing LxWxH in mm 71.3x110x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 37 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our C4 IoT controller in XT4 format: Housing illustration in 3D

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 38 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

5.3 RESI-C4-xxx XT8 housing

Figure: Dimensions of the housing for our C4 IoT Controller in XT8 modules in mm

Dimensions
Housing LxWxH in mm 142.3x110x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 39 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our C4 IoT controller in XT8 format: Housing illustration in 3D

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 40 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

5.4 RESI-C4-xxx: XT12 housing

Figure: Dimensions of the housing for our C4 IoT Controller in XT12 modules in mm

Dimensions
Housing LxWxH in mm 213x110x62
Color grey RAL 7035
Material Self-extinguishing Blend PC/ABS UL94-VO
Protection class IP20 based on DIN 40050 / EB 60529

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 41 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: For our C4 IoT controller in XT12 format: Housing illustration in 3D

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 42 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

6 Common functionalities ASCII+MODBUS
This part describes the common functionality of all RESI-T4 and RESI-C4 controller.
This are the access to the LEDS and the DIP switch, the internal real time clock and the internal ferromagnetic RAM.
Also the access to all status information of an IoT controller are described here.

For every product we offer an ASCII command and MODBUS register list to know, how our co-processor can be
used and how the functionality is mapped to the different coils and registers of the specific IoT controller.

6.1 Detecting the controller type and features
All of our controllers offer three basic ASCII commands:
TYPE to get the actual controller type
VERSION to read out the current software version of the ARM co-processor
FEATURES to retrieve the current features of the controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 43 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same information can be retrieved from the MODBUS registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 44 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

6.2 Using the LEDs and DIP switch
Most of our IoT controller offer four LEDs organized in three LED outlets in the cover plate.
 LED1: GREEN: DATA LED
 LED2: WHITE: STATE LED and LED3: RED ERROR LED
 LED4: YELLOW: INFO LED

Except of the INFO LED, which is used in some IoT controllers internally you can use this LEDs in your software to
signal special states.

Also most modules offer an 8-pin DIP switch. Again this DIP switch is only for your software.

6.2.1 Reading the DIP switch in ASCII+MODBUS
To read the DIP switch you have to use the ASCII command GDIP. Below you see the specification in our document.
The co-processor returns the current status for the DIP switch as described below.

You can also use MODBUS registers and coils get the current status of the DIP switch settings too. Search the PDF
document for DIP to find all possible MODBUS registers and coils:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 45 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

6.2.2 Update the LEDs in ASCII+MODBUS
You can switch every LED to ON, OFF. You can INVERT the current LED state. And you can blink and flash the LED
with different timings. Also you can create a one time pulse on the LED. Additional commands retrieve the current
LED status.

In ASCII you can use the following commands for all four LEDs:
 LED1: GREEN: DATA LED
 LED2: WHITE: STATE LED
 LED3: RED ERROR LED
 LED4: YELLOW: INFO LED

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 46 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 47 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

On the MODBUS you can use coils to define the LED functionality:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 48 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Or you use registers:

6.2.3 Use the real-time clock
Our ARM co-processor offers an internal real-time clock with external capacitor backup if power fails.
Therefore you can use this RTC for your internal purposes as your date & time source. If you want to synchronize
this RTC with the LINUX date & time, you have to write code for this by yourself. This RTC is completely independent
from the LINUX.

First of all you can check the current capacitor voltage with the command GCPUBACK. This is the voltage of the
external capacitor, which will be loaded during power-on of the controller and used to drive the RTC while power is
off. It should be over 3V.

Or with MODBUS registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 49 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Then you can read or write the current RTC date and time with:

Again with MODBUS registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 50 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

6.2.4 Retrieve the unique serial number+box name
Our ARM Co-processor offers a unique 96 bit serial number for your software licencing. Together with the
parameter BOXNAME you can use this to protect your software running only on a specific device:

Use the following ASCII commands to set an individual BOX name:

And retrieve the unique serial number with:

The BOX name is not accessible via MODBUS, but the serial number can be read with:

6.2.5 Use the ferromagnetic RAM
Our ARM Co-processor has a build in ferromagnetic RAM (FRAM) of 2kB. The read or write access cycles to this
FRAM is almost unlimited! All values are stored permanently. So after a power on all previous written values are
restored. You can rewrite every byte without the need to delete a bank or sector like a EEPROM or FLASH.

The controller uses this FRAM for storing all IO watchdog values for digital and analog outputs and the IO watchdog
timing. So you cannot use all of the 2kB for your application.

With the ASCII command GFRAMSIZE you can read the total size of the FRAM and the internal used bytes e.g. 210
bytes:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 51 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

With the ASCII commands GFRAM16, GFRAM32, GFRAMDBL you can read every FRAM memory location. Be aware
that the index 0 is the first byte you can use, you cannot write or read the internal used FRAM memory area.
Also you have to think about the byte size of your data, FRAM16 uses 2 bytes, FRAM32 4 bytes and FRAMDBL uses
8 bytes.
Writing to this memory will be done with SFRAM16, SFRAM32 or SFRAMDBL. You can use every byte index as a
start. But it makes sense to be even aligned!
BE AWARE: Writing a 32 bit value starting at byte 10 and the writing a 16 bit value starting at 12, will overwrite half of
the previous stored 32 bit value!

So if you write e.g. four 16 bit values you have to use the index 0, 2, 4 and 6
Writing e.g. 3 double values you have to use index 0, 8 and 16

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 52 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

You can also access this FRAM via MODBUS. For that use the UnitID 2 for accessing the FRAM with READ HOLDING
REGISTER and WRITE SINGLE REGISTER or WRITE MULTIPLE REGISTERS commands.
Every register will store two bytes of the FRAM. Again index 0 will be the first two bytes you can use in the FRAM.

To detect the type and used bytes of the FRAM from system in MODBUS use this registers:

6.2.6 Execute factory reset
In ASCII you can send the command FRST to restore all values in the FRAM to the system default values.
But you have to disconnect the IoT controller from power, wait a little bit, and then reconnect the device to power,
so that all settings can be restored properly!

You can do the same with MODBUS using a coil or a register. Again you have to re-power the device. A reboot of
the LINUX alone has no effect!

6.2.7 Additional WATCHDOG for LINUX
The co-processor offers an additional watchdog for LINUX. This watchdog must be set by your software cyclically. In
ASCII use command WD:<WDTime> to set an interval in Milliseconds. If your software do not send this command
within the defined period again, the ARM Co-processor will reset the Raspberry Pi Core, this leads to a reboot of the
device!

The same watchdog is available for MODBUS. A value of 0 in both cases will deactivate the watchdog functionality.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 53 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

6.2.8 INIT VALUES & COMMUNICATION WATCHDOG for IOs
The co-processor has a build in functionality to set the digital and analog outputs to a defined state after a power
on and if defined an IO watchdog event.

Therefore you can define for every digital output configuration values (1 or 0), but this affects also the diagnostic
features of the digital outputs. For the universal analog IOs you can define for every configured analog output a
value which is outputted at system startup and in case of an IO watchdog event. See the specific chapters, how to
define this init & watchdog values for the digital outputs and universal analog IOs.

If the watchdog timer is set to 0, only after system startup the configured values are set on the outputs.

But if you set with the ASCII command SIOWATCHDOG a new IO watchdog time, the outputs will be set to the
configuration state if there is no ASCII communication and no MODBUS communication for this time span!
With the command GIOWATCHDOG you can read the current settings. A 0 value deactivates the IO watchdog
feature.

The same watchdog is available for MODBUS.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 54 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7 RESI-T4-xxx IoT Controller

7.1 Basic functionality of T4 IoT family
Our RESI-T4 IoT controller are based on the Raspberry® Pi 4 module.
In general the Raspberry Pi 4 Model B offers the following features:
 Processor: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit
 SoC @ 1.5GHz
 Memory: 1GB, 2GB, 4GB or 8GB LPDDR4 (depending on model) with on-die ECC
 Connectivity: .4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless LAN, Bluetooth 5.0, BLE
 1xGigabit Ethernet
 2 × USB 3.0 ports
 2 × USB 2.0 ports.
 Video & sound: 2×micro HDMI ports (up to 4Kp60 supported)
 4-pole stereo audio and composite video port
 Multimedia: H.265 (4Kp60 decode); H.264 (1080p60 decode, 1080p30 encode); OpenGL ES, 3.0 graphics
 SD card slot: Micro SD card slot for loading operating system
 LINUX® pre-installed

We added the following features to this board:
 Industrial grade housing: 4MU 73x110x62mm
 Mounting on DIN rail or on-wall
 Industrial grade wide range power supply: 12-48Vdc
 4 status LEDs and 8pin DIP switch for software usage
 Maximum of three serial interfaces: RS232 or RS485
 Optional one KNX interface
 All serial interfaces appear as native serial lines in LINUX (dev/ttyACM0- dev/ttyACMn)
 No need for specific LINUX kernel drivers or real-time OS
 RS485 direction switching is done in hardware by Co-processor
 ARM® Co-processor for additional features:

 real time clock with backup capacitor
 Unique 96-Bit serial number
 2kB ferromagnetic RAM
 handles the DIP switch and the LEDs

 ARM Co-processor is connected to LINUX via serial interface dev/ttyACM0 and simple ASCII commands

Figure: Raspberry® Pi 4

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 55 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.2 RESI-T4-Z basic module
This version offers an industrial grade controller version, just with the Raspberry Pi4 Model B board and a robust 12-
48V= power supply.

Figure: Our RESI-T4-Z IoT Controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 56 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.2.1 Technical specification
Beside the basic technical data, which fulfill all of our T4 IoT Controller, this specific controller meets the following
technical specifications:

Power consumption <25W
Product housing T4-XT4
Product weight RESI-T4-Z 175g

RESI-T4-N-CAN 193g
RESI-T4-N-CFD 193g

No LEDs and no DIP switch
No ARM Co-processor

7.2.2 Additional terminals or functionalities
This IoT controller has no additional terminals or functionalities.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 57 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.2.3 Connection diagram

7.2.3.1 Cabling of the power supply and the Ethernet
This controller offers only terminals for power supply and a RJ45 connector for Ethernet. But the standard Raspberry
Pi 4 connectors are also available: 2xUSB 2.0, 2xUSB 3.0, 2xMicro HDMI, 1xAudio, 1xSD-CARD Slot.

Figure: Connection schematics for our IoT Controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 58 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.3 RESI-T4-xxx-CAN/CAN FD IoT Controller
All of our RESI-T4 controller can also have a build in CAN 2.0 or CAN FD interface. This CAN interface can be used
by open source Raspberry Pi CAN software using SPI0.

7.3.1 Technical specification
Beside the basic technical data, which fulfill all of our T4 IoT controller, this specific controller meets the following
technical specifications:

CAN interface
RESI-T4-xxx-CAN CAN 2.0 interface
RESI-T4-xxx-CFD CAN FD interface

CAN interface is connected to the SPI0 interface of the Raspberry PI

7.3.2 Additional terminals or functionalities
This module has an additional connector for CAN interface on the side of the Ethernet connector of the Raspberry
Pi 4.
CAN/CAN FD CAN 2.0 or CAN FD interface

Pin 1: H: CAN HIGH signal
Pin 2: L: CAN LOW signal
Pin 3: G: CAN Ground signal
Terminal type: RM3.5

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 59 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.3.3 Connection diagram

7.3.3.1 Additional cabling of the CAN/CAN FD interface
In addition to the standard connectors described above, this IoT controller offers a CAN or CAN FD connector.

Figure: Connection schematics for CAN 2.0 or CAN FD connection of our IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 60 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.4 RESI-T4-A,B,C,D with serial interfaces RS232 or RS485
We support various versions of our T4 IoT controller with build in serial interfaces.

 RESI-T4-A-xGB: 3xRS485
 RESI-T4-B-xGB: 2xRS485 and 1xRS232
 RESI-T4-C-xGB: 1xRS485 and 2xRS232
 RESI-T4-D-xGB: 3xRS232

Figure: Our RESI-T4-A IoT controller with three serial RS485 interfaces

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 61 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.4.1 Technical specification
Beside the basic technical data, which fulfill all of our T4 IoT controller, this specific controller meets the following
technical specifications:

Power consumption <25W
Product housing T4-XT4
Product weight RESI-T4-A,B,C,D 192g

RESI-T4-A,B,C,D-CAN 210g
RESI-T4-A,B,C,D-CFD 210g

4 LEDs and 8 pin DIP switch
ARM co-processor with real time clock+backup capacitor, 2kB ferromagnetic RAM

Serial interfaces
RESI-T4-A 3xRS485, automatic direction control
RESI-T4-B 2xRS485, automatic direction control

1xRS232
RESI-T4-C 1xRS485, automatic direction control

2xRS232
RESI-T4-D 3xRS232

Serial interfaces are connected as USB serial lines to LINUX with dev/ttyACMx in the Raspberry PI

7.4.2 Additional terminals or functionalities
This module has three additional connectors for serial interfaces.
Depending on IoT controller: Up to 3xRS485 or up to 3xRS232

RS485#? RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS485 ground signal
Terminal type: RM3.5

RS232#? RS232 serial interface
Pin 1: TX: RS232 DATA+ signal
Pin 2: RX: RS232 DATA- signal
Pin 3: M-: RS232 ground signal
Terminal type: RM3.5

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 62 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.4.3 Connection diagram

7.4.3.1 RESI-T4-A additional cabling

Figure: Connection schematics for our IoT controller

7.4.3.2 RESI-T4-B additional cabling

Figure: Connection schematics for our IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 63 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.4.3.3 RESI-T4-C additional cabling

Figure: Connection schematics for our IoT controller

7.4.3.4 RESI-T4-D additional cabling

Figure: Connection schematics for our IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 64 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.5 RESI-T4-KA,KB,KC with KNX interface+RS232 or RS485
We support various versions of our T4 IoT controller with build in serial interfaces.

 RESI-T4-KA-xGB: 1xKNX, 2xRS485
 RESI-T4-KB-xGB: 1xKNX, 1xRS485 and 1xRS232
 RESI-T4-KC-xGB: 1xKNX, 2xRS232

Figure: Our RESI-T4-KA IoT controller with one KNX and two serial RS485 interfaces

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 65 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.5.1 Technical specification
Beside the basic technical data, which fulfill all of our T4 IoT controller, this specific controller meets the following
technical specifications:

Power consumption <25W
Product housing T4-XT4
Product weight RESI-T4-KA,KB,KC 194g

RESI-T4-Kx-CAN 210g
RESI-T4-Kx-CFD 210g

4 LEDs and 8 pin DIP switch
ARM co-processor with real time clock+backup capacitor, 2kB ferromagnetic RAM

Serial interfaces
RESI-T4-KA 1xKNX

2xRS485, automatic direction control
RESI-T4-KB 1xKNX

1xRS485, automatic direction control
1xRS232

RESI-T4-KC 1xKNX
2xRS232

Serial interfaces are connected as USB serial lines to LINUX with dev/ttyACMx in the Raspberry PI

7.5.2 Additional terminals or functionalities
This module has three additional connectors for serial interfaces.
Depending on IoT controller: 1xKNX and up to 2xRS485 or up to 2xRS232

KNX KNX interface
Pin 1: K+: KNX+ signal (RED)
Pin 2: K-: KNX- signal (BLACK)
Terminal type: RM3.5
To use the KNX interface you have to use an external KNX power supply!

RS485#? RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS485 ground signal
Terminal type: RM3.5

RS232#? RS232 serial interface
Pin 1: TX: RS232 DATA+ signal
Pin 2: RX: RS232 DATA- signal
Pin 3: M-: RS232 ground signal
Terminal type: RM3.5

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 66 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 67 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.5.3 Connection diagram

7.5.3.1 RESI-T4-KA additional cabling

Figure: Connection schematics for our IoT controller

7.5.3.2 RESI-T4-KB additional cabling

Figure: Connection schematics for our IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 68 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

7.5.3.3 RESI-T4-KC additional cabling

Figure: Connection schematics for our IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 69 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8 RESI-C4-xxx IoT controller

8.1 Basic functionality of C4 family
Our RESI-C4 IoT controller are based on the Raspberry® Pi Compute Module 4.
In general the Raspberry Pi Compute Module 4 offers the following features:
 Processor: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit
 SoC @ 1.5GHz
 Memory: 1GB, 2GB, 4GB or 8GB LPDDR4 (depending on model) with on-die ECC
 1xGigabit Ethernet
 2 × USB 2.0 ports.
 Video & sound: 1×micro HDMI ports (up to 4Kp60 supported)
 Multimedia: H.265 (4Kp60 decode); H.264 (1080p60 decode, 1080p30 encode); OpenGL ES, 3.0 graphics
 SD card slot: Micro SD card slot for loading operating system
 LINUX® pre-installed

We added the following features to this board:
 Additional integrated digital and analog inputs and output
 Industrial grade housing: 4MU (73x110x62mm) or 8MU (143x110x62mm) or 12MU (213x110x62mm)
 Mounting on DIN rail or on-wall
 Industrial grade wide range power supply: 12-48Vdc
 4 status LEDs and 8pin DIP switch for software usage
 One serial interface: RS485
 RS485 direction switching is done in hardware by Co-processor
 Serial interface appears as native serial line in LINUX (dev/ttyACM0- dev/ttyACMn)
 No need for specific LINUX kernel drivers or real-time OS
 ARM® Co-processor for additional features:

 handles all integrated digital and analog IOs
 real time clock with backup capacitor
 Unique 96-Bit serial number
 2kB ferromagnetic RAM
 handles the DIP switch and the LEDs

 ARM Co-processor is connected to LINUX via two independent serial interfaces
 dev/ttyACM0 for communication with simple ASCII commands
 dev/ttyACM1 for communication with MODBUS/RTU Master protocol

Figure: Raspberry® Pi Compute Module 4

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 70 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.2 RESI-C4-A,-2E,-LTE with serial interface RS485
We support various versions of our C4 IoT controller with build-in additional IOs and other features like 2nd
Ethernet interface or LTE modem.

 RESI-C4-A-xGB: 1xRS485, 1xMicro HDMI
 RESI-C4-A-2E-xGB: 1xRS485, 1xMicro HDMI, 2nd Ethernet Interface
 RESI-C4-A-LTE-xGB: 1xRS485, 1xMicro HDMI, LTE Modem (Quectel EC25)

Figure: Our RESI-C4-A IoT controller with one serial RS485 interface and HDMI output

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 71 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: Our RESI-C4-A-2E IoT controller with 1xRS485 interface, HDMI output and 2nd Ethernet Interface

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 72 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: Our RESI-C4-A-LTE IoT controller with 1xRS485 interface, HDMI output and LTE modem

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 73 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.2.1 Technical specification
Beside the basic technical data, which fulfill all of our C4 IoT controller, this specific controller meets the following
technical specifications:

Power consumption <25W
Product housing C4-XT4
Product weight
RESI-C4-A 179g
RESI-C4-A-2E 195g
RESI-C4-A-LTE 201g

4 LEDs and 8 pin DIP switch
ARM co-processor with real time clock+backup capacitor, 2kB ferromagnetic RAM

Serial interfaces
1xRS485, automatic direction control

Serial interface is connected as USB serial line to LINUX with dev/ttyACMx in the Raspberry PI

2nd Ethernet connected via USB 2.0 to CM4
native as eth1 in LINUX available

LTE Modem Quectel EC25
connected via USB 2.0 to CM4
native as wwan0 in LINUX available
after correct configuration and SIM card inserted

8.2.2 Additional terminals or functionalities
This module has one additional connector for serial interface.

1xRS485

SIO1 RS485 serial interface
Pin 1: A+: RS485 DATA+ signal
Pin 2: B-: RS485 DATA- signal
Pin 3: M-: RS485 ground signal
Terminal type: RM3.5

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 74 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.2.3 Connection diagram

8.2.3.1 RESI-C4-A additional cabling

Figure: Connection schematics for our IoT controller

8.2.3.2 RESI-C4-A-2E additional cabling

Figure: Connection schematics for our IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 75 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.2.3.3 RESI-C4-A-LTE additional cabling

Figure: Connection schematics for our IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 76 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3 Which IO types do our RESI-C4 series offer
Our IoT controllers offer various combinations of digital inputs and outputs and universal analog inputs and outputs.
Also we offer various types of relay outputs and special modules.

Therefore in this section we explain the basic principal of each IO class.

8.3.1 Digital inputs DC 12-48V=
This input type supports DC signals with 12-48Vdc. It drives the input with max. 1.8mA current. Also the digital inputs
are not galvanically insulated from the rest of the controller. So connect the ground of your power supply for the
input signal with the ground of your IoT controller.

Figure: Our RESI-C4-A-24DI IoT controller with 24 digital inputs

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 77 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.1Technical specification
The digital inputs meets the following technical specification

DIGITAL INPUTS
Sampling rate As fast as possible

Internal software filter ~35-80ms

DC rating
Input voltage range 12-48V= +/-10%
Input current per channel

approx. 0,8mA@12V=
approx. 1.5mA@20V=
approx. 1.8mA@24V=
approx. 2.5mA@32V=
approx. 4.0mA@48V=

Input power consumption max. 0.3W/channel
Logic levels 0: <3.8V=

1: >4.7V=

Terminal type RM3.5
Galvanic insulation No, ground of digital inputs is wired to ground of IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 78 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.2 Additional terminals or functionalities
Depending on the module the digital inputs are grouped in 6 or 16 inputs on one terminal block

DIGITAL INPUTS
Input groups Terminal type: RM3.5

C: Common ground: wired to system ground
1..n: Digital input 1-n

0=open or connected to ground
1=DC voltage between 12 and 48V=

Pin layout 6 digital inputs for 12-48Vdc signals
One 8 pin plug-in terminal block
Pin 1: C: Common ground
Pin 2: 1: Digital input #1
…
Pin 7: 6: Digital input #6
Pin 8: C: Common ground

or 16 digital inputs for 12-48Vdc signals
One 18 pin plug-in terminal block
Pin 1: C: Common ground
Pin 2: 1: Digital input #1
…
Pin 17: 16: Digital input #16
Pin 18: C: Common ground

INFO If at least one of the digital inputs is activated (ON), this LED is ON.
If none of the digital inputs are activated (OFF), this LED is OFF.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 79 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.3 Cabling of the digital inputs

Figure: Example of cabling of the digital inputs to a RESI-C4-A-16DI15DO16AIOX IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 80 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.4 Using the digital inputs with ASCII+MODBUS

8.3.1.4.1 Digital input filter
Our digital inputs are read internally as fast as possible. But we filter the digital inputs with a software filter based on
5ms filter time. The digital filter looks every 5ms at the last 16 samplings. If more than 7 samples have the state ON,
the actual input status will be ON. So some glitches on the digital inputs are filtered and will have no effect. So the
response time is around 35-80ms depending how many glitches your signal has.

8.3.1.4.2 Current status of digital inputs
In ASCII you can read the current status of the digital inputs with the commands GDIS or GDIx:

In MODBUS you have many coils and registers which will show the actual digital input state:
Here are registers for coils or inputs (Every input as one bit):

The same readout can be done by holding or input registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 81 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can also read all digital inputs together:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 82 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.4.3 Change & event counter for inputs
The firmware in the co-processor detects the following events for every digital input:
 Rising edge
 Falling edge
 Short keypress
 Long keypress start
 Long keypress end

To detect very fast in your software if anything on the inputs has changed since your last poll use this ASCII
command:

On MODBUS read this register:

Its an event counter starting with 0 after power on.
So this value can be incremented not only by 1 for the next readout. But in your software you can save the last
readout value. If the new readout value is different to the saved one, you know, that something has happened on
the digital inputs.

But you can also readout the changes for every digital input separately:
In ASCII use this command to read blocks of 16 inputs:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 83 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

or for only one digital input:

On the MODBUS use this registers with one bit. On every change this bit toggles. But be aware, if you are not fast
enough you can miss a change because maybe there are more than one changes on the digital inputs since your
last poll.

Or you use a table for every digital input, which stores all events. Here you will find a counter for every type of event
for one specific digital input. e.g. DI3

There is another short form table in MODBUS for every digital input with all its events for faster readout:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 84 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same information can be read via ASCII commands:
 SHORT KEYPRESS EVENT COUNTER: SKDIx or SKADISPp
 LONG KEYPRESS START EVENT COUNTER: LKSDIx or LKSADISPp
 LONG KEYPRESS END EVENT COUNTER: LKEDIx or LKEADISPp
 RISING EDGE EVENT COUNTER: RDIx or RADISPp
 FALLING EDGE EVENT COUNTER: FDIx or FADISPp

For example here is the ASCII description for short keypress event:

With the ASCII command RESET COUNTERS you can set all counters to 0

The same command on MODBUS for coil:

and for holding register:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 85 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.1.4.4 ASCII Events
The firmware in the co-processor can send the actual status of all digital inputs in case of a change on the digital
inputs automatically without the need of polling the current status. But be aware, that then the co-processor sends
this string whenever a change occurs. This has to be handled by your software. Also the event can be send before
the ASCII answer to an ASCII request is sent back!

To activate this event feature, simply send EVTON command. After that command, the controller will send at every
change of a digital input a telegram in the format:

For controller with less or equal to 32 digital inputs:
#255,EVT:DIS:<StateOfDI1-32 in Dec>,<StateOfDI1-32 in Hex>
e.g. DI1 has changed from 0 to 1:
#255,EVT:DIS:1,0x1

For controller with more than 32 digital inputs:
#255,EVT:DIS:<StateOfDI1-32 in Dec>,<StateOfDI33-64 in Dec>,<StateOfDI1-32 in Hex>,<StateOfDI33-64 in Hex>
e.g. DI33 has changed form 0 to 1
#255,EVT.DIS:0,1,0x0,0x1

To switch this events off, send EVTOFF command

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 86 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2 Digital outputs DC ≦30V=
This output type supports DC semiconductor outputs for maximum 30Vdc output voltage. It drives every output
with a maximum current of 700mA. Also the outputs are organized in groups of 6, 12 or 15 digital outputs with own
output power supply. Every output group is limited to a maximum output current of 1.8A and can have its own
power supply. But the grounds of all power supplies are internally connected with the M- of the IoT controller.
Extensive diagnostic features are available for every output: Thermal overload, over-current, shortcut to power
supply, open wire.

Figure: Our RESI-C4-A-64DI60DO16AIOX IoT controller with 60 digital outputs

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 87 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.1 Technical specification
The digital outputs meets the following technical specification

DIGITAL OUTPUTS
Update rate As fast as possible

DC rating
Output voltage range 10-36V= +/-10%, typical 24V=
Output current max. 700mA

Diagnostic Loss of power supply
Thermal overheating
Overload
Over-current
Open wire in state ON and OFF
Shortcut to power supply in state OFF

Terminal type RM3.5
Galvanic insulation No, the digital output groups are internally tied to ground of

the IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 88 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.2 Additional terminals or functionalities
Depending on the module the digital outputs are grouped in 6, 12 or 15 outputs on one terminal block

DIGITAL OUTPUTS
Output groups Terminal type: RM3.5

Sx:C: Common ground: wired to system ground
Sx:+: Power supply input max. 30Vdc
1..n: Digital output 1-n

0=output is open
1=output is closed and delivers the voltage
of the Sx:+ terminal

Pin layout power supply of output group
Pin 1: Sx:C: Common ground
Pin 2: Sx:+: Power supply 10-30Vdc

6 digital outputs for DC signals max. 700mA
One 6 pin plug-in terminal block
Pin 1: 1: Digital output #1
…
Pin 6: 6: Digital output #6

or 15 digital outputs for DC signals max. 700mA
One 15 pin plug-in terminal block
Pin 1: 1: Digital output #1
…
Pin 15: 15: Digital output #15

INFO If at least one of the digital outputs is activated (ON), this LED is ON.
If none of the digital outputs are activated (OFF), this LED is OFF.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 89 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.3 Cabling of the digital outputs

Figure: Example of cabling of the digital outputs to a RESI-C4-A-16DI15DO16AIOX IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 90 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.4 Using the digital outputs with ASCII+MODBUS

8.3.2.4.1 Update all digital inputs & outputs
In ASCII there is a special command to update all digital outputs and read back the actual state of all digital inputs
with one command:

8.3.2.4.2 Current status of digital outputs
In ASCII you can read the current status of the digital outputs with the commands GDOS or GDOx:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 91 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

For writing an new state to a digital output in ASCII use the command SDOS or SDOx:

In MODBUS you have many coils and registers which will show the actual digital output state or with which you can
set a new output state:

Here are tables for coils (every output as one bit):

The same reading and writing can be done by holding registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 92 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can also read and write to digital output groups in holding register:

8.3.2.4.3 Pulsing the digital outputs
With a special ASCII command you can initiate a one time pulse on a specific output. You can read back the
remaining duration of the current output pulse.

But you can also initiate this digital output pulse with this MODBUS registers:

The remaining time for the current pulse can be read with this registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 93 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.4.4 Diagnostic information for digital outputs
Our digital outputs offer many commands to retrieve diagnostic information of a digital output or a chipset for a
group of digital outputs.

The main diagnostic features per output are:
 Detect open wire while DO=ON
 Detect open wire while DO=OFF
 Detect shortcut to power supply (VDD) while DO=OFF
 Detect thermal overload for DOx
 Detect current limit for DOx

The main diagnostic features for a chipset are:
 Is SPI communication OK
 An overload situation was detected
 A current limit was detected
 A supply error was detected
 A communication error was detected
 Internal under voltage detected
 External power supply VDD not good detected (<17V)
 External power supply VDD warning detected (<12V)
 External power supply VDD under voltage detected (<8V)
 Thermal shutdown

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 94 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.4.4.1 General diagnostic status of every chip
First we concentrate on the general diagnostic features per chipset.
Every chipset can drive up to 8 digital outputs. So for a 30DO module, we build four chips into the module.

With the command GDOINTS you will get the status of all chips. When you want to read out only one chip use
GDOINTx command. Please refer to the command list for the meaning of every bit.

The same information you can retrieve from the MODBUS. You can read coils or holding registers to retrieve the
information:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 95 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 96 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Also you can read a holding register with compact information:

The command GDOERRS will retrieve the error status of all chips:

Again you can read only one chip with GDOERRx command:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 97 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 98 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Again you can read the same information via MODBUS coils or holding registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 99 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Or you read the compact info from holding registers:

8.3.2.4.4.2 SPI communication status of every chip
With the command GSSDOGS you can read the current status of the internal SPI communication between the ARM
co-processor and the chips for the digital outputs. For every chip there is one bit in the answer.

The command GSSDOGx will retrieve the SIP communication status of one chip.

To check the SPI communication status with MODBUS use for coils:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 100 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

or for holding registers:

You can read also the SPI communication within one register:

8.3.2.4.4.3 Diagnostic status of every digital output
The chips return for every digital output the following diagnostic status:
 Detect open wire while DO=ON
 Detect open wire while DO=OFF
 Detect shortcut to power supply (VDD) while DO=OFF
 Detect thermal overload for DOx
 Detect current limit for DOx

In ASCII you can use the following commands to read out the current diagnostic status:
 Detect open wire while DO=ON → use GDOOWFONS for all DOs or GDOOWFONx for one specific DO
 Detect open wire while DO=OFF → use GDOOWFOFFS for all DOs or GDOOWFOFFx for one specific DO
 Detect shortcut to power supply (VDD) while DO=OFF → use GDOSVDDS for all DOs or GDOSVDDx for one

specific DO
 Detect thermal overload for DOx → use GDOTOS for all DOs or GDOTOx for one specific DO
 Detect current limit for DOx → use GDOCLS for all DOs or GDCLOx for one specific DO

As an example of the ASCII commands we list here the GDOTOS and GDOTOx commands. The rest of the
commands you will find in the command lists of your controller.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 101 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Again on the MODBUS side, we show as an example the coils and registers for the detect open wire while DO=ON
status, the other registers are found in our command lists:

or you read the compact status from holding registers:

Similar ASCII commands and MODBUS coils & registers you will find for the other diagnostic informations in out
command & register list for every product.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 102 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But before this status is updated you have to select for every individual output, which type of diagnostic you want to
enable. Therefore we offer the following commands:

 Detect open wire while DO=ON → Enable this diagnostic with SDOEOWDONS or one individual output with
SDOEOWDONx, check the current enable status with GDOEOWDONS or for one DO with GDOEOWDONx

 Detect open wire while DO=OFF → Enable this diagnostic with SDOEOWDOFFS or one individual output with
SDOEOWDOFFx, check the current enable status with GDOEOWDOFFS or for one DO with GDOEOWDOFFx

 Detect shortcut to power supply (VDD) while DO=OFF → Enable this diagnostic with SDOESVDDS or one
individual output with SDOESVDDx, check the current enable status with GDOESVDDS or for one DO with
GDOESVDDx

 Detect thermal overload for DOx → Is always enabled
 Detect current limit for DOx → Is always enabled

As an example here the ASCII commands for enabling the shortcut to VDD diagnostic while DO=OFF:

For the other two enable commands you will find the ASCII syntax in the command & register lists of your product.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 103 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

With MODBUS you can enable the same diagnostic features with coils or registers. You can enable/disable every
single DO with this registers:

or

For using one compact register use:

For the two other diagnostic features the registers are in the command & register lists for the individual product.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 104 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.2.4.4.4 Configuration of diagnostic status for init & watchdog
You can set a status for the three diagnostic features, which will be used after power on or after a communication
watchdog. Please refer to INIT VALUES & COMMUNICATION WATCHDOG for IOs, how this functionality works.

Use the following commands to configure this features:
 Detect open wire while DO=ON → Enable the configuration of this diagnostic with SCDOEOWDONS, check

the current configuration with GCDOEOWDONS
 Detect open wire while DO=OFF → Enable the configuration of this diagnostic with SCDOEOWDOFFS, check

the current configuration with GCDOEOWDOFFS
 Detect shortcut to power supply (VDD) while DO=OFF → Enable the configuration of this diagnostic with

SCDOESVDDS, check the current configuration with GCDOESVDDS
 Detect thermal overload for DOx → Is always enabled
 Detect current limit for DOx → Is always enabled

Here are the ASCII commands for the configuration of the diagnostic function detect shortcut to power supply
(VDD) while DO=OFF:

The configuration process for the other diagnostic functionality in case of power on or IO communication watchdog
is similar and found in our command & register list for every product.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 105 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

You can define the same bits with MODBUS using the following registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 106 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 107 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.3 Relay outputs ≦30V=, ≦250V~, ≦6A, AgSnO2

This output type supports relay outputs for maximum 30Vdc or 250Vac voltage and max. 6A current. All relay are
normally open relay with form A contacts. As contact material we use only relays with AgSnO2.

Figure: Our RESI-C4-A-32DI24RO16AIOX IoT controller with 24 relay outputs

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 108 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.3.1 Technical specification
The realy outputs meets the following technical specification

RELAY OUTPUTS
Update rate As fast as possible

Relay type Mono stable, Form A

Maximum voltage 250Vac
Maximum current 6A
Mechanical lifetime 106 cycles of operation
Contact material AgSnO2

Max. switching power AC1 1500VA
Max. switching power AC15 (230V~) 300VA
Max. switching power AC3 185W
Max. switching power DC1 6A@30V=

0.2A@110V=
0.12A@220V=

Insulation Creep-age and clearance distance 8mm

Cable connection Power supply: via one 2-pin plug in terminal block

Terminal type RM3.5
Galvanic insulation Yes, with the relay

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 109 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.3.2 Additional terminals or functionalities
Depending on the module the relay outputs are grouped in 12 or 24 relay outputs on one terminal block

RELAY OUTPUTS
Relay output x Terminal type: RM3.5

ROx:+: Contact A of Form A relay
ROx:-: Contact B of Form A relay
1..n: Relay output 1-n

0=Relay is open
1=Relay is closed

Pin layout 12/24 Form A relay outputs
Twelve/twenty-four 2 pin plug-in terminal block
Pin 1: 1: Relay output #1: Contact A
Pin 2: 2: Relay output #1: Contact B

Pin 1: 1: Relay output #12/24: Contact A
Pin 2: 2: Relay output #12/24: Contact B

INFO If at least one of the relay outputs is activated (ON), this LED is ON.
If none of the relay outputs are activated (OFF), this LED is OFF.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 110 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.3.3 Cabling of the relay outputs

Figure: Example of cabling of the relay outputs to a RESI-C4-A-32DI24RO16AIOX IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 111 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.3.4 Using the relay outputs with ASCII+MODBUS

8.3.3.4.1 Update all digital inputs & relay outputs
In ASCII there is a special command to update all relay outputs and read back the actual state of all inputs with one
command:

8.3.3.4.2 Current status of relay outputs
In ASCII you can read the current status of the digital outputs with the commands GDOS or GDOx:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 112 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

For writing to a digital output in ASCII use the command SDOS or SDOx:

In MODBUS you have many coils and registers which will show the actual digital output state or with which you can
set a new output state:

Here are registers for coils or registers (Every output as one bit):

The same reading and writing can be done by holding registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 113 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can also read and write to all digital outputs together:

8.3.3.4.3 Pulsing the relay outputs
A special ASCII command generates a one time pulse on a digital output:

But you can also initiate this digital output pulse with this MODBUS registers:

The remaining time for the current pulse can be read with this registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 114 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 115 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4 Universal analog inputs & outputs 0-10V, 0-20mA, RTD
Our IoT controller with universal analog inputs and output offer versatile use of analog signals in the field. Every
analog input or output can be configured with software to its function. You can choose between the following
analog IO types:

 UNUSED: Analog IO is not used in your application

 ANALOG INPUT 0-10V or 2-10V
 ANALOG INPUT 0-20mA or 4-20mA loop powered
 ANALOG INPUT 0-20mA or 4-20mA external powered

 ANALOG OUTPUT 0-10V or 2-10V
 ANALOG OUTPUT 0-20mA or 4-20mA

 RESISTOR INPUT ohm measurement 0-1MOhm
 TEMPERATURE INPUT for PT100 sensor
 TEMPERATURE INPUT for PT1000 sensor
 TEMPERATURE INPUT for NI1000-DIN43760 sensor

 DIGITAL INPUT for logic input 24Vdc
 DIGITAL INPUT loop powered

Figure: Our RESI-C4-A-16AIOX IoT controller with 16 universal analog inputs & outputs

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 116 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.1 Technical specification
The analog inputs and outputs meet the following technical specification

ANALOG INPUTS/OUTPUTS

VOLTAGE INPUT
Input range 0-10V
Resolution 16 bit
Accuracy max. ±0.04V

CURRENT INPUT
Input range 0-25mA
Resolution 16 bit
Accuracy max. ±0.125mA

VOLTAGE OUTPUT
Output range 0-11V
Resolution 13 bit
Accuracy max. ±0.044V

CURRENT OUTPUT
Output range 0-25mA
Resolution 13 bit
Accuracy max. ±0.1375mA

RESISTOR (RTD) INPUT
Input range 0-1MOhm
Resolution 16 bit

Accuracy Range Accuracy
 0-80Ω ±0.5%±0.5Ω

80-200Ω ±0.3%
200-1kΩ ±0.2%
1k-10kΩ ±0.2%
10k-20kΩ ±0.3%
20k-100kΩ ±0.8%
100k-200kΩ ±1.0%
200k-1MΩ ±8%

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 117 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

TEMPERATURE INPUT
for 2 wire PT100, PT1000, NI1000-DIN43760 sensors with internal linearisation

Sensor Accuracy
Sensor type PT100 ±0.3%

PT1000 ±0.2%
NI1000-DIN43760 ±0.2%

DIGITAL INPUT Logic input
Input range ≦40V, 1,8mA
Input Threshold 12V= hysteresis 11.80-12.00V

DIGITAL INPUT Loop powered
Input current if contact is closed 4mA

Terminal type RM3.5
Galvanic insulation All grounds of all analog inputs and outputs are internally tied

together.
The complete analog input & output block is galvanically isolated

from the rest of the IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 118 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.2 Additional terminals or functionalities

UNIVERSAL ANALOG INPUTS & OUTPUTS
IO groups Terminal type: RM3.5

N+: Signal + for analog input or output N
N-: Signal – or ground for analog input or output N

Pin layout 4 universal analog inputs or outputs
One to four 8 pin plug-in terminal blocks
Pin 1: 1+,5+,9+,13+: Signal + for AI#1,5,9 or 13
Pin 2: 1-,5-,9-,13-: Signal – or ground for AI#1,5,9 or 13
…
Pin 1: 4+,8+,12+,16+: Signal + for AI#4,8,12 or 16
Pin 2: 4-,8-1,12-,16-: Signal – or ground for AI#4,8,12 or 16

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 119 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.3 Cabling of the universal analog inputs or outputs

Figure: Example of cabling of the universal analog inputs or outputs to a RESI-C4-A-16AIOX IoT controller

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 120 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: Wiring of the different analog input and output signals and types

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 121 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Figure: Wiring of the different digital and temperature input types

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 122 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4 Using the universal analog inputs & outputs with ASCII+MODBUS

8.3.4.4.1 Communication with co-processor
The universal analog inputs and outputs (AIOX) are driven be an additional ARM processor. This processor talks to
the ARM co-processor via an internal serial interface. The two processors exchange the current status of all analog
inputs and outputs every 100ms. So the effective update rate on the AIOX is 10 samples per second.

8.3.4.4.2 Howto set the IO type of the AIOX
In ASCII you can set the IO type for every AIOX with the commands SIOTYPS or SIOTYPx. This command will also
save the actual IO type for every AIOX in the ferromagnetic RAM. After a restart of the IoT controller the last IO type
setting is automatically used for all AIOX inputs and outputs.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 123 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

You can read back the current setting for all AIOX with GIOTYPS or for one channel with GIOTYPx:

In MODBUS you have the following holding registers to configure the type of the analog inputs or outputs:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 124 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.3 Howto read analog inputs 0-10V or 2-10V
If an AIOX is configured either to ANALOG INPUT with 0-10V or to ANALOG INPUT with 2-10V you can use the
ASCII commands GVISV or GVIVx to read the actual value of the analog input:

For all AIOX, which have a different IO type, this function returns 999.99. Otherwise the last measured analog input
will be returned.

But you can read the analog input also as percentage value with the ASCII command GVISP or GVIPx:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 125 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

On the MODBUS interface you can read the actual value of the analog inputs with this holding registers:

If the AIOX is configured to a different type, the return value will be 65535 or 0xFFFF. If there is a valid analog input
measurement, the register contains the current AI measurement result in Volts*100. So 537 stands for 5,37V.

But you can also read the AIOX value in percent:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 126 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.4 Howto set an analog output 0-10V or 2-10V
If an AIOX is configured either to ANALOG OUTPUT with 0-10V or to ANALOG OUTPUT with 2-10V you can use the
ASCII commands SVOSV or SVOVx to set a new value for the analog output. For analog outputs configured 0-10V
you can set a value between 0 to 11V. For outputs configured to 2-10V, you can set 0V to output 0V and 2-11V to
output 2-11V. But every value >0 and <2V will be outputted as 2V.

But you can also set a new value for the analog outputs in percent:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 127 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

To read back the actual value of the analog outputs use the commands GVOVS or GVOVx:

Again you can read back the analog outputs also as a percent value with these commands:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 128 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

In addition to detect any error in the analog output, the actual output current of the voltage output is measured
too. You can read this value with the function GVOSC or GVOCx. A value >30mA is a good indication of a short cut
on the analog output.

On the MODBUS you have again holding registers to output a new value for the configured analog outputs:

You can choose also the registers to use percent values:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 129 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

To read back the actual output current with MODBUS registers use this registers:

8.3.4.4.5 Howto read analog inputs 0-20mA or 4-20mA
If an AIOX is configured either to ANALOG INPUT with 0-20mA or to ANALOG INPUT with 4-20mA you can use the
ASCII commands GCISMA or GCIMAx to read the actual value of the analog input:

But you can also read this value as a percent value:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 130 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

On the MODBUS side, you can read out the actual values for a current input from the registers:

or again in percent, if you like:

8.3.4.4.6 Howto set analog outputs 0-20mA or 4-20mA
If an AIOX is configured either to ANALOG OUTPUT with 0-20mA or to ANALOG OUTPUT with 4-20mA you can
use the ASCII commands SCOSMA or SCOMAx to write a new value to the AIOX:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 131 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The following MODBUS registers do the same job:

You can also write a new current value in percent to the AIOX with the commands SCOSP or SCOPx:

To read back the actual value of the current output in Milliampere use the commands GCOSMA or GCOMAx:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 132 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Use these MODBUS registers to write percentage values to the current outputs:

If you use an AIOX as current output the system measures also the actual voltage on the current outputs. You can
use this value to detect some errors in the current output. Use the ASCII commands GCOSV or GCOVx to read-back
the actual voltage:

This MODBUS registers have the same purpose to give back the actual measured voltage for a current output.

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 133 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 134 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Or you choose to read-back the values in percent with GCOSP or GCOPx:

8.3.4.4.7 Howto read a digital input
If an AIOX is configured either to DIGITAL INPUT for 24Vdc, logic or to DIGITAL INPUT for 24Vdc, loop powered you
can read with the ASCII commands GVDIS or GVDIx the current status of the digital inputs:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 135 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

If you want to read the status with MODBUS use this registers:

The system measures also the actual current for the digital inputs. You can read this current with the ASCII
commands GVDISC or GVDICx:

The same measured current on the MODBUS registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 136 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.8 Howto read a resistor value
If an AIOX is configured to RTD SENSOR INPUT, the input will measure the current resistor value and return this
measurement value in Ohm.
Therefore you have the ASCII commands GRTDISOHM and GRTDIOHMx. Both will return the actual resistor value:

In addition the AIOX has an integrated average function: It sums up 100 measurements and then updates the
average values. The retrieve this average values use the ASCII commands GAVGRTDISOHM or GAVGRTDIOHMx:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 137 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

You can read the current measurement also via MODBUS with the holding registers. We have mirrored the values in
various register banks to ease the use of the resistor value. The first bank holds the current resistor value multiplied
by 10. But with this registers you can only measure 0 to 60000Ohm with the accuracy of 0.1Ohm!

Again you can also read the average values from this holding registers:

To be more accurate but with a smaller range you can read holding registers to retrieve the current resistor value
between 0 and 60000Ohm with the accuracy of 1Ohm:

Again as average value in this registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 138 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Another register bank stores higher resistor values between 0 and 600000Ohm with the accuracy of 10Ohm.

Again also as average values:

All those above registers are UINT16. But you can read the full resistor value from UINT32 registers in two
encodings:

The next register bank hold the resistor values in Ohm*100 as values between 0 and 1MOhm with two commas in
UINT32 format:

The same values are stored in another register bank in UINT32R format, because there is not only one encoding
standard in MODBUS how to store 32 bit value sin 16 bit holding or input registers. See the chapter about MODBUS
encoding for more information:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 139 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same with two banks with the average resistor values:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 140 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.9 Howto read a PT100,PT1000,NI1000-DIN43760 sensor
If an AIOX is configured to RTD SENSOR INPUT, the input will measure the current resistor value. Internally the
processor converts and linearise this resistor value and check the measurement range to create the current
temperature value, when you connect a PT100, PT1000 or NI1000-DIN43760 2-wire sensor to the AIOX input.

You can read out the actual temperature measurement with the following ASCII commands:
 GRTDISPT100C, GRTDIPT100Cx → Actual PT100 sensor temperature in °Celsius
 GRTDISPT100K, GRTDIPT100Kx → Actual PT100 sensor temperature in °Kelvin
 GRTDISPT100F, GRTDIPT100Fx → Actual PT100 sensor temperature in °Fahrenheit

 GRTDISPT1000C, GRTDIPT1000Cx → Actual PT1000 sensor temperature in °Celsius
 GRTDISPT1000K, GRTDIPT1000Kx → Actual PT1000 sensor temperature in °Kelvin
 GRTDISPT1000F, GRTDIPT1000Fx → Actual PT1000 sensor temperature in °Fahrenheit

 GRTDISNI1000DIN43760C, GRTDINI1000DIN43760Cx → Actual NI1000 sensor temperature with DIN43760
linearisation in °Celsius

 GRTDISPT1000DIN43760K, GRTDINI1000DIN43760Kx → Actual NI1000 sensor temperature with DIN43760
linearisation in °Kelvin

 GRTDISPT1000DIN43760F, GRTDINI1000DIN43760Fx → Actual NI1000 sensor temperature with DIN43760
linearisation in °Fahrenheit

As an example here the commands to read out a PT1000 sensor in °Celsius in ASCII:

You can read out also an average temperature with the following ASCII commands. The average is calculated from
the sum of the last 100 measurements:

 GAVGRTDISPT100C, GAVGRTDIPT100Cx → Actual PT100 sensor temperature in °Celsius
 GAVGRTDISPT100K, GAVGRTDIPT100Kx → Actual PT100 sensor temperature in °Kelvin
 GAVGRTDISPT100F, GAVGRTDIPT100Fx → Actual PT100 sensor temperature in °Fahrenheit

 GAVGRTDISPT1000C, GAVGRTDIPT1000Cx → Actual PT1000 sensor temperature in °Celsius
 GAVGRTDISPT1000K, GAVGRTDIPT1000Kx → Actual PT1000 sensor temperature in °Kelvin
 GAVGRTDISPT1000F, GAVGRTDIPT1000Fx → Actual PT1000 sensor temperature in °Fahrenheit

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 141 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 142 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

 GAVGRTDISNI1000DIN43760C, GAVGRTDINI1000DIN43760Cx → Actual NI1000 sensor temperature with
DIN43760 linearisation in °Celsius

 GAVGRTDISPT1000DIN43760K, GAVGRTDINI1000DIN43760Kx → Actual NI1000 sensor temperature with
DIN43760 linearisation in °Kelvin

 GAVGRTDISPT1000DIN43760F, GAVGRTDINI1000DIN43760Fx → Actual NI1000 sensor temperature with
DIN43760 linearisation in °Fahrenheit

As an example here the commands to read out the average value of a NI1000-DIN43760 sensor in °Celsius in ASCII:

But you can read the PT100, PT1000 and NI1000-DI43760 sensors also via MODBUS registers. You will find tables for
reading the sensors in CELSIUS, FAHRENHEIT or KELVIN. As an example here we show the table for PT100 readout
in °Celsius:

Again you can also read the average value for one sensor:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 143 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.10 Howto set output values for INIT & IO WATCHDOG
If an AIOX is configured as an output, you can set a start up value, which is stored in the FRAM. This value will be
used as an init value after a power-on and outputted on the voltage or current outputs. Also this value will be
outputted if you have set a IO watchdog and the ASCII and MODBUS communication meet the defined watchdog
timeout. So you can bring your external devices into a defined state.

Take the ASCII commands SCFGOVS to define for all analog outputs a startup value or use SCFGOVx to set a
specific output value. The new value is stored in the FRAM:

You can read the current settings with GCFGOVS and GCFGOVx:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 144 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

But you can read and write this values also via MODBUS holding registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 145 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.11 Howto detect status & diagnostic of AIOX hardware
The communication between the AIOX hardware and the main ARM co-processor is done via serial interface. Whit
this command you can check if this internal connection is ok or not. If not, this highlights a severe hardware
problem!

You can check this status also with this MODBUS register:

Every AIOX chip controls 4 AIOX inputs or outputs. Depending on the amount of AIOX you have in your controller
(4/8 or 16), you can check the SPI communication status between the AIOX processor and the chips with the ASCII
commands ARECHIPSONLINE or ISCHIPONLINEx:

The same information for every chip can be read back with the MODBUS registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 146 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

Every AIOX chip has also some diagnostic information, which you can use to detect the health status of the AIOX.
use GALSTATES or GLSTATEx command:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 147 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

The same information you can read with this MODBUS registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 148 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

8.3.4.4.12 Howto check temperature & supply voltages of AIOX hardware
The AIOX chips deliver two supply voltage measurements and measure the internal temperature of the AIOX chips.
We deliver versions with 1, 2 or 4 AIOX chips to offer 4, 8 or 16 AIOX channels. For a stable operation, this values
should be under 80°C. If not, you have to coll your switchboard cabinet.

To read the current chip temperatures use this ASCII commands GCHIPTEMPS or GCHIPTEMPx. To read the average
value use GAVGCHIPTEMPS or GAVGCHIPTEMPx:

The same values can be read via MODBUS with this registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 149 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

You can also check the AIOX chip supply voltage and the AIOX ground voltage. If the supply voltage drops under
14.5V you have a severe hardware issue or a cabling issue. If the ground voltage is not 0, you have an issue in your
cabling or in the internal hardware too.

With the ASCII commands GVADDS and GVADDx you can read the current supply voltage. The average values can
be read with GAVGVADDS and GAVGVADDx:

Here are the MODBUS registers for the same measurements of the supply voltage:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 150 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 151 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

For the ground voltage measurement you have the ASCII commands GVAGNDS and GVAGNDx. Again for the
average values use GAVGVAGNDS or GAVGVAGNDx:

Again on the MODBUS side take this registers:

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 152 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

RESI Informatik & Automation GmbH RESI-T4/C4 IoT Controller 153 von 153
© Copyright by RESI Informatik & Automation GmbH & DI HC Sigl,MSc

	1 Our portfolio
	1.1 RESI-T4-xxx Compact IoT Controller
	1.2 RESI-C4-xxx IoT Controller with integrated IOs

	2 Declaration of conformity
	2.1 CE
	2.2 Safety instructions

	3 Mounting for XT4, XT8 or XT12
	3.1 Mounting on a DIN EN50022 rail
	3.2 Mounting onto a wall

	4 General technical data
	4.1 RESI-T4-xxx Basic technical data
	4.2 RESI-C4-xxx Basic technical data
	4.3 RESI-T4-xxx: Basic terminals
	4.4 RESI-C4-xxx: Basic terminals
	4.5 MODBUS and ASCII commands
	4.5.1 MODBUS mapping+ASCII command list for T4+C4 IoT controller
	4.5.2 MODBUS RTU master communication
	4.5.3 HOWTO map values to MODBUS registers
	4.5.4 MODBUS query response cycle
	4.5.5 MODBUS/RTU telegram structure

	4.6 MODBUS commands
	4.6.1 MODBUS 16 bit holding register structure
	4.6.2 MODBUS big vs. least significant byte order
	4.6.3 MODBUS storing large data into 16 bit registers
	4.6.4 MODBUS datatypes in our Co-processor
	4.6.5 MODBUS datatype storage and common pitfalls
	4.6.6 MODBUS data type table
	4.6.7 MODBUS table

	4.7 ASCII protocol
	4.7.1 COMMUNICATION SEQUENCE
	4.7.2 Example: Query VERSION
	4.7.3 Example: Query module TYPE
	4.7.4 Table of all ASCII commands

	5 Dimensions of our IoT Controller
	5.1 RESI-T4-xxx XT4 housing
	5.2 RESI-C4-xxx XT4 housing
	5.3 RESI-C4-xxx XT8 housing
	5.4 RESI-C4-xxx: XT12 housing

	6 Common functionalities ASCII+MODBUS
	6.1 Detecting the controller type and features
	6.2 Using the LEDs and DIP switch
	6.2.1 Reading the DIP switch in ASCII+MODBUS
	6.2.2 Update the LEDs in ASCII+MODBUS
	6.2.3 Use the real-time clock
	6.2.4 Retrieve the unique serial number+box name
	6.2.5 Use the ferromagnetic RAM
	6.2.6 Execute factory reset
	6.2.7 Additional WATCHDOG for LINUX
	6.2.8 INIT VALUES & COMMUNICATION WATCHDOG for IOs

	7 RESI-T4-xxx IoT Controller
	7.1 Basic functionality of T4 IoT family
	7.2 RESI-T4-Z basic module
	7.2.1 Technical specification
	7.2.2 Additional terminals or functionalities
	7.2.3 Connection diagram
	7.2.3.1 Cabling of the power supply and the Ethernet

	7.3 RESI-T4-xxx-CAN/CAN FD IoT Controller
	7.3.1 Technical specification
	7.3.2 Additional terminals or functionalities
	7.3.3 Connection diagram
	7.3.3.1 Additional cabling of the CAN/CAN FD interface

	7.4 RESI-T4-A,B,C,D with serial interfaces RS232 or RS485
	7.4.1 Technical specification
	7.4.2 Additional terminals or functionalities
	7.4.3 Connection diagram
	7.4.3.1 RESI-T4-A additional cabling
	7.4.3.2 RESI-T4-B additional cabling
	7.4.3.3 RESI-T4-C additional cabling
	7.4.3.4 RESI-T4-D additional cabling

	7.5 RESI-T4-KA,KB,KC with KNX interface+RS232 or RS485
	7.5.1 Technical specification
	7.5.2 Additional terminals or functionalities
	7.5.3 Connection diagram
	7.5.3.1 RESI-T4-KA additional cabling
	7.5.3.2 RESI-T4-KB additional cabling
	7.5.3.3 RESI-T4-KC additional cabling

	8 RESI-C4-xxx IoT controller
	8.1 Basic functionality of C4 family
	8.2 RESI-C4-A,-2E,-LTE with serial interface RS485
	8.2.1 Technical specification
	8.2.2 Additional terminals or functionalities
	8.2.3 Connection diagram
	8.2.3.1 RESI-C4-A additional cabling
	8.2.3.2 RESI-C4-A-2E additional cabling
	8.2.3.3 RESI-C4-A-LTE additional cabling

	8.3 Which IO types do our RESI-C4 series offer
	8.3.1 Digital inputs DC 12-48V=
	8.3.1.1 Technical specification
	8.3.1.2 Additional terminals or functionalities
	8.3.1.3 Cabling of the digital inputs
	8.3.1.4 Using the digital inputs with ASCII+MODBUS
	8.3.1.4.1 Digital input filter
	8.3.1.4.2 Current status of digital inputs
	8.3.1.4.3 Change & event counter for inputs
	8.3.1.4.4 ASCII Events

	8.3.2 Digital outputs DC ≦30V=
	8.3.2.1 Technical specification
	8.3.2.2 Additional terminals or functionalities
	8.3.2.3 Cabling of the digital outputs
	8.3.2.4 Using the digital outputs with ASCII+MODBUS
	8.3.2.4.1 Update all digital inputs & outputs
	8.3.2.4.2 Current status of digital outputs
	8.3.2.4.3 Pulsing the digital outputs
	8.3.2.4.4 Diagnostic information for digital outputs
	8.3.2.4.4.1 General diagnostic status of every chip
	8.3.2.4.4.2 SPI communication status of every chip
	8.3.2.4.4.3 Diagnostic status of every digital output
	8.3.2.4.4.4 Configuration of diagnostic status for init & watchdog

	8.3.3 Relay outputs ≦30V=, ≦250V~, ≦6A, AgSnO2
	8.3.3.1 Technical specification
	8.3.3.2 Additional terminals or functionalities
	8.3.3.3 Cabling of the relay outputs
	8.3.3.4 Using the relay outputs with ASCII+MODBUS
	8.3.3.4.1 Update all digital inputs & relay outputs
	8.3.3.4.2 Current status of relay outputs
	8.3.3.4.3 Pulsing the relay outputs

	8.3.4 Universal analog inputs & outputs 0-10V, 0-20mA, RTD
	8.3.4.1 Technical specification
	8.3.4.2 Additional terminals or functionalities
	8.3.4.3 Cabling of the universal analog inputs or outputs
	8.3.4.4 Using the universal analog inputs & outputs with ASCII+MODBUS
	8.3.4.4.1 Communication with co-processor
	8.3.4.4.2 Howto set the IO type of the AIOX
	8.3.4.4.3 Howto read analog inputs 0-10V or 2-10V
	8.3.4.4.4 Howto set an analog output 0-10V or 2-10V
	8.3.4.4.5 Howto read analog inputs 0-20mA or 4-20mA
	8.3.4.4.6 Howto set analog outputs 0-20mA or 4-20mA
	8.3.4.4.7 Howto read a digital input
	8.3.4.4.8 Howto read a resistor value
	8.3.4.4.9 Howto read a PT100,PT1000,NI1000-DIN43760 sensor
	8.3.4.4.10 Howto set output values for INIT & IO WATCHDOG
	8.3.4.4.11 Howto detect status & diagnostic of AIOX hardware
	8.3.4.4.12 Howto check temperature & supply voltages of AIOX hardware

